## Exploiting the dynamic properties of Pt on ceria for low temperature CO

## oxidation<sup>†</sup>

G. Ferré<sup>a</sup>, M. Aouine<sup>a</sup>, F. Bosselet<sup>a</sup>, L. Burel<sup>a</sup>, F.J. Cadete Santos Aires<sup>a</sup>, C. Geantet<sup>a</sup>, S.

Ntais<sup>a</sup>, F. Maurer<sup>b</sup>, M. Casapu<sup>b</sup>, J.-D. Grunwaldt<sup>b</sup>, T. Epicier<sup>c</sup>, S. Loridant<sup>a</sup>, P. Vernoux<sup>a</sup>,

## Supporting information



**Figure S1:** Diffraction pattern of the Pt/CeO<sub>2</sub> catalyst after an oxidation step for 1 h in 20% O<sub>2</sub> at 500 °C. All peaks correspond to the Fm-3m cubic structure of ceria (JCPDS 00-34-0394). Inset: zoom of the XRD pattern between 34 and 43°, the bar indicates the theoretical position of the more intense diffraction peak of Pt<sup>0</sup> (2 $\theta$  = 39.9°, JCPDS 00-004-802).



Figure S2: Pt 4f XPS spectrum of the Pt/CeO<sub>2</sub> catalyst at the reference state.



**Figure S3.** Impact of the REDOX sequence on the NO<sub>2</sub> yield of Pt/CeO<sub>2</sub>: a)  $\text{Red}_{500}/\text{Ox}_{500}$ , b)  $\text{Red}_{250}/\text{Ox}_{250}$  and c)  $\text{Red}_{250}/\text{Ox}_{RT}$ . Lean mixture:  $[C_3H_6] = 500$  ppm, [CO] = 1000 ppm, [NO] = 500 ppm,  $[O_2] = 10\%$  and  $[H_2O] = 10\%$ . Note that LOref curves in a), b) and c) are not identical due to slightly different Pt loadings in the SiC/catalyst mixtures.



**Figure S4.** Two successive LOref light-off curves : a) CO conversion b)  $C_3H_6$  conversion and c) NO<sub>2</sub> yield. Lean mixture:  $[C_3H_6] = 500$  ppm, [CO] = 1000 ppm, [NO] = 500 ppm,  $[O_2] = 10\%$  and  $[H_2O] = 10\%$ .



**Figure S5**. Impact of the presence of water on the LOref performances: a) CO conversion b)  $C_3H_6$  conversion and c) NO<sub>2</sub> yield. Lean mixture:  $[C_3H_6] = 500$  ppm, [CO] = 1000 ppm, [NO] = 500 ppm,  $[O_2] = 10\%$  and  $[H_2O] = 0$  or 10%.



Figure S6. CO and  $CO_2$  concentration profiles versus temperature during LO2 after a  $Red_{250}/Ox_{RT}$  sequence.



**Figure S7.** Impact of a lean/rich pulse cycling at 250 °C on the catalytic performances of Pt/CeO<sub>2</sub>: a) CO conversion b)  $C_3H_6$  conversion and c) NO<sub>2</sub> yield. The pulses sequence were composed of 30 s in 2% CO/He followed by 90 s in the lean mixture cycled for 1 h. Lean mixture :  $[C_3H_6] = 500$  ppm, [CO] = 1000 ppm, [NO] = 500 ppm,  $[O_2] = 10\%$  and  $[H_2O] = 10\%$ .



**Figure S8**. Representative STEM images of  $Pt/CeO_2$  a) after a reduction at 500 °C for 1 h in 10% H<sub>2</sub>/He and b) after a reduction at 250 °C for 1 h in 10% H<sub>2</sub>-He.



**Figure S9.** Particle size histogram of the Pt/CeO<sub>2</sub> catalyst after a reduction either at 250 °C or 500 °C for 1 h in 10% H<sub>2</sub>/He and after a pulse cycling at 250°C for 1 h (90 s in the lean mixture and 30 s in 2% CO/He). The size distribution was based on around 100 particles. Projected mean equivalent diameter: 0.83 nm ( $\sigma$ = 0.23 nm) after a reduction at 250 °C, 1.46 nm ( $\sigma$  = 0.33 nm) after a reduction at 500 °C and 1.30 nm ( $\sigma$  = 0.26 nm) after pulse cycling at 250°C.



**Figure S10.** Video of a Pt cluster produced after a  $\text{Red}_{250}/\text{Ox}_{250}$  at RT in high vacuum (High Resolution TEM mode).



**Figure S11**: Variation of the O<sub>2</sub> consumption of the Pt/CeO<sub>2</sub> catalyst as a function of time at room temperature after a TPR (1% H<sub>2</sub>/He) up to 250°C (10°C/min) and a plateau at 250°C for 1 h in 10% H<sub>2</sub>/He.



**Figure S12**. a) Raw diffraction patterns of a fresh Pt/CeO<sub>2</sub> catalyst (in its reference state) recorded in air (blue) and in H<sub>2</sub> (red) as a function of the temperature between 25 and 750 °C.  $25^*$ : XRD recorded at 25°C in air or H<sub>2</sub> after the cooling from 750°C in the same atmosphere. b) Variation of the ceria lattice parameter extracted from a) between H<sub>2</sub> and air thermal treatment as a function of the temperature.



**Figure S13**: Variations of the CO conversion as a function of the temperature: LOref after an oxidation step for 1 h in 20% O<sub>2</sub> at 500 °C mixture, LO 2: after a Red<sub>250</sub>/Ox<sub>RT</sub> sequence and LO 3: after a Red<sub>250</sub>/Ox<sub>RT</sub> sequence but without any propene in the feed. Reactive mixture:  $[C_3H_6] = 0 / 500$  ppm, [CO] = 1000 ppm, [NO] = 500 ppm,  $[O_2] = 10\%$  and  $[H_2O] = 10\%$ .

Table S1 : Comparison of the CO oxidation rates and TOF (Turn-Over Frequency) values at 100°C for various  $Pt/CeO_2$  catalysts from literature and in this work.

| Species and                                   | Specific | Pt loading                       | Reaction                            | WHSV                                           | rCO       | TOF                 | Ref       |
|-----------------------------------------------|----------|----------------------------------|-------------------------------------|------------------------------------------------|-----------|---------------------|-----------|
| conditioning                                  | surface  | (wt.%) and                       | conditions                          | (L·g <sup>-1</sup> ·catalyst·h <sup>-1</sup> ) | (mmol/s/g | $(x10^{-2} s^{-1})$ |           |
| _                                             | area     | precursor                        |                                     |                                                | Pt)       |                     |           |
|                                               | (m²/g)   |                                  |                                     |                                                |           |                     |           |
| Subnanometric                                 | 125      | 0.88                             | [CO]=1000                           | 750                                            | 0.198     | 4-6                 | This work |
| thin Pt clusters                              |          | $Pt(NH_3)_4(NO_3)_2$             | ppm, $[C_3H_6] =$                   |                                                |           | Estimated           |           |
| after $\text{Red}_{250}\text{Ox}_{\text{RT}}$ |          |                                  | 500 ppm, [NO]                       |                                                |           | for Pt              |           |
|                                               |          |                                  | = 500 ppm,                          |                                                |           | between             |           |
|                                               |          |                                  | $[U_2]^- = 10\%$                    |                                                |           | 60 and              |           |
|                                               |          |                                  | [1120] 1070                         |                                                |           | 100%                |           |
| Pt nanoparticles                              | 30       | 1                                | [CO]=1000                           | 600                                            | 0.17      | 6                   | [1]       |
| After redox                                   |          | $Pt(NH_3)_4(NO_3)_2$             | $ppm, [C_3H_6] =$                   |                                                |           | Estimated           |           |
| pulses at 250°C                               |          |                                  | 500 ppm, [O <sub>2</sub> ]=         |                                                |           | for a Pt            |           |
|                                               |          |                                  | 8%                                  |                                                |           | dispersion          |           |
| Di O Di 1                                     | 0.0      | 0.07                             | [GO] 1000                           | 2400                                           | 10        | of 50%              | [0]       |
| Pt-O-Pt clusters                              | 80       | 0.27                             | [CO]=1000                           | 2400                                           | 10        | 196                 | [2]       |
| at 200°C in 5%                                |          | H <sub>2</sub> PiCl <sub>6</sub> | ppm, $[O_2] = 5\%$ [H O] =          |                                                |           |                     |           |
| $H_2$ and $a$                                 |          |                                  | 5% $[1120] = 5%$                    |                                                |           |                     |           |
| subsequent                                    |          |                                  | No propene.                         |                                                |           |                     |           |
| exposure to                                   |          |                                  | rio propene.                        |                                                |           |                     |           |
| CO/O <sub>2</sub> feed                        |          |                                  |                                     |                                                |           |                     |           |
| between 100 and                               |          |                                  |                                     |                                                |           |                     |           |
| 185°C                                         |          |                                  |                                     |                                                |           |                     |           |
| Single atom                                   | 25.6     | 1                                | [CO]=4000                           | 200                                            | 0.181     | 3.5                 | [3]       |
| After a steam                                 |          | $H_2PtCl_6$                      | ppm, $[C_3H_6] =$                   |                                                |           |                     |           |
| treatment at                                  |          |                                  | 100 ppm, [NO]                       |                                                |           |                     |           |
| /50°C                                         |          |                                  | = 500  ppm,                         |                                                |           |                     |           |
|                                               |          |                                  | $[U_2]^- = 1070,$<br>$[H_2O] = 5\%$ |                                                |           |                     |           |
| Nanoparticles                                 | 38       | 1                                | [CO]=1.9%.                          | 232                                            | 1.05      | 20.6                | [4]       |
| after a calcination                           |          | $Pt(NH_3)_4(NO_3)_2$             | $[O_2] = 1.3\%$                     |                                                |           | (calculated         |           |
| at 800°C 10 h and                             |          |                                  |                                     |                                                |           | from the            |           |
| a reduction at                                |          |                                  |                                     |                                                |           | total               |           |
| 275°C for 1 h in                              |          |                                  |                                     |                                                |           | number of           |           |
| CO (8% in He)                                 |          |                                  |                                     |                                                |           | Pt atoms)           |           |

## References

[1] A.M. Gänzler, M. Casapu, P. Vernoux, S. Loridant, F.J. Cadete Santos Aires, T. Epicier, B. Betz, R. Hoyer, J.-D. Grunwaldt, Tuning the Structure of Platinum Particles on Ceria *In Situ* for Enhancing the Catalytic Performance of Exhaust Gas Catalysts, Angew. Chem. Int. Ed. 56 (2017) 13078–13082. doi:10.1002/anie.201707842.

[2] H. Wang, J.-X. Liu, L.F. Allard, S. Lee, J. Liu, H. Li, J. Wang, J. Wang, S.H. Oh, W. Li, M. Flytzani-Stephanopoulos, M. Shen, B.R. Goldsmith, M. Yang, Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms, Nat. Commun. 10 (2019). doi:10.1038/s41467-019-11856-9.

[3] L. Nie, D. Mei, H. Xiong, B. Peng, Z. Ren, X.I.P. Hernandez, A. DeLaRiva, M. Wang, M.H. Engelhard, L. Kovarik, A.K. Datye, Y. Wang, Activation of surface lattice oxygen in single-atom Pt/CeO<sub>2</sub> for low-temperature CO oxidation, Science. 358 (2017) 1419–1423. doi:10.1126/science.aao2109.

[4] X.I. Pereira-Hernández, A. DeLaRiva, V. Muravev, D. Kunwar, H. Xiong, B. Sudduth, M. Engelhard, L. Kovarik, E.J.M. Hensen, Y. Wang, A.K. Datye, Tuning Pt-CeO<sub>2</sub> interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen, Nat. Commun. 10 (2019). doi:10.1038/s41467-019-09308-5.