Supporting information

Acidic nanomaterials (TiO₂, ZrO₂, and Al₂O₃) are coke storage components that reduce deactivation of Pt-Sn/ γ -Al₂O₃ catalyst in propane dehydrogenation

Adisak Guntida^a, Sippakorn Wannakao^b, Piyasan Praserthdam^{a,*} and Joongjai Panpranot^a

^{*a*} Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

^b SCG Chemicals, Co., Ltd., 1 Siam Cement Road, Bangsue, Bangkok 10800, Thailand

Fig. S1 NH₃-TPD profiles of acidic nanomaterials.

Fig. S2 H₂-TPR profiles of acidic nanomaterials.

Fig. S3 O₂-TPD profiles of acidic nanomaterials.

Fig. S4 O1 s peak in the XPS spectrum of acidic nanomaterials.

Fig. S5 O1 s peak in the XPS spectrum of acidic nanomaterials with different temperature of pretreatment.

Table S1 Summerized converison and products selectivity during propane dehydrogenation

Initial at 0 h								
Catalysts	Conversion	Selectivity (%)						
	(%)	C ₁	C ₂	$C_2^{=}$	$C_3^{=}$	C_4	$C_4^{=}$	C_5^+
inert	0.2	6.8	16.1	11.5	40.9	24.8	0.0	0.0
Al_2O_3	0.8	23.1	0.8	35.5	38.5	0.0	2.1	0.0
ZrO ₂	1.0	13.9	0.4	16.1	69.7	0.0	0.0	0.0
TiO ₂	7.2	2.4	1.2	2.2	93.7	0.1	0.5	0.0
Pt-Sn/ γ -Al ₂ O ₃ + inert	26.2	3.4	4.8	0.4	82.9	3.0	4.5	1.0
$Pt-Sn/\gamma-Al_2O_3+Al_2O_3$	27.7	4.3	5.6	0.4	80.5	3.5	4.9	1.0
$Pt-Sn/\gamma-Al_2O_3+ZrO_2$	30.3	7.0	8.2	0.5	77.8	2.6	3.2	0.7
$Pt-Sn/\gamma-Al_2O_3+TiO_2$	27.7	6.0	7.1	0.4	75.8	3.0	3.5	4.2

Final at 5.1 h

Catalysts	Conversion	on Selectivity (%)						
	(%)	C_1	C ₂	$C_2^{=}$	$C_{3}^{=}$	C_4	$C_4^{=}$	C_5^+
inert	0.3	8.8	10.8	16.4	48.0	16.1	0.0	0.0
Al_2O_3	1.1	17.7	0.7	28.8	51.8	0.0	1.0	0.0
ZrO_2	2.7	5.5	0.5	7.2	86.9	0.0	0.0	0.0
TiO ₂	2.3	5.5	1.2	8.6	84.7	0.0	0.0	0.0
$Pt-Sn/\gamma-Al_2O_3+inert$	12.2	2.7	1.9	2.0	89.4	0.2	2.7	1.2
$Pt-Sn/\gamma-Al_2O_3+Al_2O_3$	12.5	3.2	1.9	2.3	90.2	0.1	2.0	0.3
$Pt-Sn/\gamma-Al_2O_3+ZrO_2$	24.1	1.8	2.1	0.5	91.8	0.5	2.0	1.3
$Pt-Sn/\gamma-Al_2O_3+TiO_2$	19.3	2.1	2.1	0.1	90.6	0.3	2.6	1.3

 Table S2 Textural properties of acidic nanomaterials

Nanomaterials	BET surface area	Pore size	Pore volume
	$(m^2 . g^{-1})$	(nm)	$(cm^3 \cdot g^{-1})$
Al ₂ O ₃	123.5	12.7	0.54
ZrO_2	27.1	18.9	0.14
TiO ₂	37.3	26.0	0.30

Nanomaterials	Amount of acidity (µmol NH ₃ . g cat ⁻¹)					
_	Weak	Medium	Strong	Total		
Al ₂ O ₃	864	1152	1283	3298		
ZrO_2	130	181	834	1149		
TiO ₂	175	1099	916	2191		

Table S3 Amount of acidity of nanomaterials

Table S4 CO-chemisorption of the Pt-Sn/ γ -Al₂O₃ catalyst with acidic nanomaterials

Catalysts	Amount of CO adsorbed	Pt dispersion
	(µmol CO. g cat ⁻¹)	(%)
$Pt-Sn/\gamma-Al_2O_3+inert$	12.3	80.0
$Pt-Sn/\gamma-Al_2O_3+Al_2O_3$	13.2	85.8
$Pt-Sn/\gamma-Al_2O_3+ZrO_2$	14.2	92.3
$Pt-Sn/\gamma-Al_2O_3+TiO_2$	15.0	97.5

Table S5 O_2 -TPD results of acidic nanomaterials

Nanomaterials	O ₂ -TPD peaks	O ₂ desorption
	position (°C)	(mmol O_2 . g cat ⁻¹)
Al ₂ O ₃	146	0.44 (O _v)
	368	0.48
	654	0.13
ZrO_2	87	0.56 (O _v)
	267	0.43
	529	0.30
TiO ₂	165	0.93 (O _v)
	307	0.02

Table S6 XPS results of acidic nanomaterials

Nanomaterials	$O_{\rm W}/O_{\rm I}$
	0.62
$A1_2O_3$	0.05
ZrO_2	0.69
TiO ₂	1.23

Table S7 Adsorption energy of propylene and propadiene on acidic nanomaterials by *in-situ*

 DSC

Nanomaterials	Propylene	Propadiene
	$(J. g cat^{-1})$	$(J. g cat^{-1})$
Al ₂ O ₃	1.03	5.07
ZrO_2	1.27	5.33
TiO ₂	1.46	6.50

Table S8 The summarized coke forms during the in *situ* DRIFT study of propadiene at different temperature

Nanomaterials	Temp.	Area of coke forms				Differentiatio	on ^a
	(°C)	C=C	Aliphatics	Aromatics	C=C	Aliphatics	Aromatics
TiO ₂	40	1.22	0.036	0.01	1.00	0.00	0.00
	100	1.02	0.048	0.03	0.84	1.33	3.00
	200	0.32	0.02	0.31	0.26	0.56	31.00
	300	0.07	0.011	4.67	0.06	0.31	467.00
ZrO_2	40	3.49	0.12	0.08	1.00	0.00	0.00
	100	3.47	0.17	0.11	0.99	1.42	1.38
	200	0.76	0.16	1.56	0.22	1.33	19.50
	300	0.05	0.08	8.5	0.01	0.67	106.25
Al_2O_3	40	3.51	0.009	1.47	1.00	0.00	0.00
	100	1.97	0.016	2.27	0.56	1.78	1.54
	200	1.73	0.062	2.43	0.49	6.89	1.65
	300	1.46	0.152	1.81	0.42	16.89	1.23

^a At 40 °C, there is no differentiation (initial = 1.00).

At elevated temperature, differentiation = area $_{i \text{ at that temperature}}$ / area $_{i \text{ at 40}}$ °C

Nanomaterials	O_V / O_L	Coke deposition on nanomaterials
		(%)
Al ₂ O ₃ 500 °C	0.63	N/A
Al ₂ O ₃ 550 °C	0.64	N/A
Al ₂ O ₃ 600 °C	0.64	N/A
ZrO ₂ 500 °C	0.69	2.5
ZrO ₂ 550 °C	0.71	2.5
ZrO ₂ 600 °C	0.70	2.5
TiO ₂ 500 °C	1.23	3.1
TiO ₂ 550 °C	1.39	3.5
TiO ₂ 600 °C	1.41	3.7

Table S9 The summarized coke deposition and oxygen vacancies of different pretreated acidic nanomaterials