Supporting material

Figure S1. Photographic images taken from the as-prepared microspheres (a) Alg-Ca²⁺ and (b) Alg-Cu²⁺.

Figure S2. EDX analysis and elemental mapping of Alg-Cu²⁺ microspheres.

Spectral information of the synthesized products

3,5-Dimethyl-1-phenyl-4-(phenylselanyl)-1H-pyrazole (4a) Yield: 0.262 g (80%); orange solid; mp 82-84 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 2.33 (s, 3H, CH₃), 2.38 (s, 3H, CH₃), 7.13-7.19 (m, 5H, Ar-H), 7.37-7.48 (m, 5H, Ar-H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm) = 12.5, 12.9, 102.6, 124.8, 125.8, 127.8, 128.4,

129.1, 129.2, 133.0, 139.9, 144.1, 153.3; MS (relative intensity, %) *m/z*: 77 (96.2), 118 (55.0), 157 (3.8), 171 (5.2), 248 (100.0), 328 (75.4).

3-Methyl-1,5-diphenyl-4-(phenylselanyl)-1H-pyrazole (4b)

Yield: 0.347 g (89%); beige solid; mp 68-69 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 2.39 (s, 3H, CH₃), 7.13-7.19 (m, 7H, Ar-H), 7.24-7.30 (m, 8H, Ar-H); ¹³C NMR (100 MHz ,CDCl₃,) δ (ppm) =13.0, 103.5, 124.8, 125.8, 127.2, 128.2, 128.5, 128.7, 128.8, 129.1, 129.9, 130.1, 133.3, 139.9, 147.0, 154.0; MS (relative intensity, %)

m/z: 77 (71.6), 157 (0.9), 180 (18.8), 233 (5.3), 310 (100.0), 390 (69.5).

3,5-Diethyl-1-phenyl-4-(phenylselanyl)-1H-pyrazole (4c)

Yield: 0.213 g (78%); orange oil; ; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 1.00 (t, 3H, *J* 7.6 Hz, CH₃), 1.23 (t, 3H, *J* 7.6 Hz, CH₃), 2.71 (q, 2H, *J* 7.6 Hz, CH₂), 2.79 (q, 2H, *J* 7.6 Hz, CH₂), 7.19-7.26 (m, 5H, Ar-H), 7.41-7.47 (m, 5H, Ar-H); ¹³C NMR (100 MHz ,CDCl₃), δ (ppm) = 14.2, 14.4, 19.6, 21.3, 100.7, 125.8, 126.0, 128.5, 128.6,

129.5, 129.6 134.1, 140.5, 150.2, 158.8; MS (relative intensity, %) *m/z*: 77 (48.4); 132 (17.0), 157 (2.1), 199 (3.2), 275 (100.0), 356 (36.8).

1-(2,4-Dimethylphenyl)-3,5-dimethyl-4-phenylselanyl-1H-pyrazole (4d)

Yield: 0.249 g (70%); yellowish solid; mp 84-86 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 2.03 (s, 3H, Ar-CH₃), 2.11 (s, 3H, Ar-CH₃), 2.31 (s, 3H, CH₃), 2.38 (s, 3H, CH₃), 7.07-7.22 (m, 8H, Ar-

H); ¹³C NMR (100 MHz ,CDCl₃,) δ (ppm) = 11.3, 12.9, 17.1, 21.2, 100.4, 125.6, 127.2, 127.4, 128.0, 129.1, 131.5, 133.3, 135.6, 136.2, 139.2, 145.2, 152.8; MS (relative intensity, %) *m/z*: 77 (45.0), 105 (28.4), 118 (4.5), 157 (12.9), 199 (11.0), 275 (66.4), 356 (100.0).

I-(2,4-Difluorophenyl)-3,5-dimethyl-4-(phenylselanyl)-1H-pyrazole (4e) Yield: 0.254 g (71%); yellow oil; ; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 2.24 (s, 3 H, CH₃), 2.31 (s, 3 H, CH₃), 6.98–7.04 (m, 2 H, Ar-H), 7.15– 7.26 (m, 5 H, Ar-H), 7.45 -7.51 (m, 1 H, Ar-H);); ¹³C NMR (100 MHz ,CDCl₃), δ (ppm) = 11.2 (d, J 3.4 Hz), 12.9, 102.0, 105.0 (dd, J 25.9 and 23.4 Hz), 112.0 (dd, J 23.5 and 4.1 Hz), 124.1 (dd, J 12.6 and 4.3 Hz), 125.8, 128.3, 129.2, 129.7 (dd, J 10.1 and 1.4 Hz), 132.7, 146.2, 154.09, 161.3 (dd, *J* 254.7 and 12.8 Hz), 163.9 (dd, *J* 254.2 and 12.6 Hz); MS(relative intensity, %) *m/z*: 41 (6), 63 (3), 65 (11), 77 (32), 91 (6), 103 (9), 113 (42), 127 (28), 128 (16), 140 (7), 143 (5), 154 (100), 155 (13), 166 (6), 194 (2), 207 (8), 222 (5), 236 (4), 242 (16), 243 (11), 256 (8), 263 (9), 268 (18), 269 (7), 283 (63), 284 (99), 362 364. (M⁺ 59), (30), 365 (6), 366 (12).

3,5-dimethyl-4-(phenylselanyl)-1H-pyrazole (4f)

Yield: 0.131 g (52%); white solid, m.p: 103-105 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 2.34 (s, 6H, CH₃), 7.10-7.18 (m, 5H, Ar-H), 11.65 (s,

1H, N-H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 12.0, 100.1, 125.7, 128.3, 129.2, 133.2, 149.1; MS (relative intensity, %) *m/z*: 77 (16.3), 95 (13.2), 118 (1.6), 157 (10.6), 172 (100.0), 252 (58.9).

4-(*Mesitylselanyl*)-3,5-dimethyl-1-phenyl-1H-pyrazole (4g): Yield: 0.281 g (76%); yellow oil; ; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 2.15 (s, 3 H, Ar-CH₃) 2.25 (s, 6 H, Ar-CH₃), 2.44 (s, 6 H, CH₃), 6.80-6.88 (s, 2 H, Ar-H), 7.38-7.45 (m, 5 H, Ar-H);); ¹³C NMR (100 MHz ,CDCl₃,) δ (ppm) = 12.2, 12.9, 20.8, 24.0, 104.2, 124.7, 127.5, 127.8, 128.8, 129.0 137.5, 139.8, 141.5, 141.7, 151.8; (relative intensity, %) *m/z*: 41 (5). 51 (11), 65 (7), 77 (61), 91 (19), 115 (14), 117 (19), 118

(42), 130 (7), 158 (16), 171 (12), 183 (10), 195 (22), 196 (26), 196 (51), 198 (100), 200 (28), 251 (2), 278 (3), 289 (9), 366 (14), 367 (15), 368 (40), 369 (18), 370 (M⁺ 74), 371 (17), 372 (14).

3,5-dimethyl-1-phenyl-4-(p-tolylselanyl)-1H-pyrazole (4h) Yield: 0.0.273 g (80%); slightly orange solid, m.p: 95-97 °C; ; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 2.27 (s, 3H, Ar- CH₃), 2.33 (s, 3H, CH₃), 2.37 (s, 3H, CH₃), 7.01-7.03 (m, 2H, Ar-H), 7.10-7.12 (m, 2H, Ar-H), 7.34-7.39 (m, 1H, Ar-H), 7.45-7.46 (m, 4H, Ar-H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) =12.6, 13.0, 21.0, 103.2, 124.8,

127.8, 128.9, 129.1, 129.20, 130.0, 135.8, 140.0, 144.0, 153.3; MS (relative intensity, %) *m/z*: 77 (55.1), 118 (32.1), 170 (3.9), 171 (5.7), 262 (100.0), 342 (46.7).

4-[(4-Chlorophenyl)selanyl]-3,5-dimethyl-1-phenyl-1H-pyrazole (4i) Yield: 0.147 g (45%); yellowish solid, m.p: 124-125 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 2.32 (s, 3H, CH₃), 2.37 (s, 3H, CH₃), 7.11-7.17 (m, 3H, Ar-H), 7.26 (s, 1H, Ar-H), 7.39 (s, 1H, Ar-H), 7.47-7.51 (m, 4H, Ar-H); ¹³C NMR (100 MHz ,CDCl₃), δ (ppm) =12.4, 12.9, 102.3, 124.8, 127.9, 129.1, 129.2, 129.6, 131.2, 131.8,

139.7, 144.1, 153.1; MS (relative intensity, %) m/z: = 77 (100.0), 118 (59.5), 171 (3.9), 191 (2.3), 282 (83.9), 362 (66.3).

4-(Butylselanyl)-3,5-dimethyl-1-phenyl-1H-pyrazole (4j) Yield: 0.194 g (63%); yellowish oil. ; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 0.90 (t, *J* 7.5 Hz, 3H, CH₃), 1.42 (sext, *J* 7.5 Hz, 2H, CH₂), 1.58 (quint, *J* 7.5 Hz, 2H, CH₂), 2.38 (s, 3H, CH₃), 2.40 (s, 3H, CH₃), 2.58 (t, *J* 7.5 Hz, 2H, CH₂), 7.34-7.36 (m, 1H, Ar-H),

7.44-7.48 (m, 4H, Ar-H); ¹³C NMR (100 MHz ,CDCl₃,) δ (ppm) = 12.6, 13.1, 13.6, 22.8, 28.4, 32.4, 103.2, 124.7, 127.5, 129.0, 140.0, 143.3, 152.9; MS (relative intensity, %) *m/z*: 57 (6.1), 77 (72.3), 118 (75.4), 171 (100.0), 251 (24.3), 308 (43.9).

100 90 f1 (ppm) Figure S4. ¹³C NMR (100 MHz) spectrum for product 4a in CDCl₃.

²³⁰ ²²⁰ ²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ ⁻¹⁰ ⁻¹⁰ **Figure S6.** ¹³C NMR (100 MHz) spectrum for product **4b** in CDCl₃.

Figure S7. ¹H NMR (400 MHz) spectrum for product 4c in CDCl₃.

Figure S8. ¹³C NMR (100 MHz) spectrum for product 4c in CDCl₃.

Figure S9. ¹H NMR (400 MHz) spectrum for product 4d in CDCl₃.

Figure S10. ¹³C NMR (100 MHz) spectrum for product 4d in CDCl₃.

Figure S11. ¹H NMR (400 MHz) spectrum for product 4e in CDCl₃.

Figure S12. ¹³C NMR (100 MHz) spectrum for product 4e in CDCl₃.

Figure S13. ¹H NMR (400 MHz) spectrum for product 4f in CDCl₃.

Figure S14. ¹³C NMR (100 MHz) spectrum for product 4f in CDCl₃.

Figure S15. ¹H NMR (400 MHz) spectrum for product 4g in CDCl₃.

Figure S17. ¹H NMR (400 MHz) spectrum for product 4h in CDCl₃.

Figure S18. ¹³C NMR (100 MHz) spectrum for product 4h in CDCl₃.

Figure S19. ¹H NMR (400 MHz) spectrum for product 4i in CDCl₃.

Figure S20. ¹³C NMR (100 MHz) spectrum for product 4i in CDCl₃.

Figure S21. ¹H NMR (400 MHz) spectrum for product 4j in CDCl₃.

Figure S22. ¹³C NMR (100 MHz) spectrum for product 4j in CDCl₃.