The influence of ceria on Cu/TiO$_2$ catalysts to produce abundant oxygen vacancies and induce highly efficient CO oxidation

Ching-Shiun Chena,b,*, Tse-Ching Chenb, Hung-Chi Wua, Jia-Huang Wua, Jyh-Fu Leec

aCenter for General Education, Chang Gung University, 259, Wen-Hua 1st Rd,
Guishan Dist, Taoyuan City 33302, Taiwan, Republic of China.

*E-mail: cschen@mail.cgu.edu.tw

bDepartment of Pathology, Chang Gung Memorial Hospital Linkou, 5, Fusing St,
Guishan Dist, Taoyuan City 33302, Taiwan, Republic of China

cNational Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, Republic of China
Fig. S1 Dependence of the relative area of H$_2$-TPR experiments for the reduced Cu/TiO$_2$, CuCe$_x$/TiO$_2$ and CuCe$_5$/SiO$_2$ samples versus the different oxidation time. The as-impregnated Cu samples was calcined in air stream and reduced in H$_2$ at 573 K for 5 h, respectively. The reduced Cu samples were oxidized by a 10% N$_2$O/N$_2$ stream at 343 K.
Fig. S2 N$_2$ adsorption-desorption isotherms of the TiO$_2$, Cu/TiO$_2$ and CuCe$_x$/TiO$_2$ catalysts.
Fig. S3 XPS spectra of Cu $2p_{3/2}$ for the Cu/TiO$_2$, CuCe$_x$/TiO$_2$ and CuCe$_5$/SiO$_2$ samples.
Fig. S4 \(\text{H}_2 \)-TPR profiles of the calcined Cu/TiO\(_2\), CuCe\(_x\)/TiO\(_2\) and CuCe\(_x\)/SiO\(_2\) samples. The as-impregnated Cu samples was calcined in air stream at 573 K for 5 h.
Fig. S5 Temperature-dependent IR spectra of CO adsorbed onto the reduced (A) Cu/TiO\textsubscript{2} and (B) CuCe\textsubscript{10}/TiO\textsubscript{2} samples. CO adsorptions were performed via exposure to a 20 mL/min pure CO stream for 30 min at room temperature, followed by a 20 mL/min helium stream for 50 min to purge the CO gas.
Fig. S6 Temperature-dependent IR spectra of a CO/air stream adsorbed on the reduced Cu/TiO$_2$. A gaseous mixture of 4.5% CO and 2.23% O$_2$ with a flow rate of 50 mL/min was passed through 50 mg of catalyst over the course of CO oxidation.
Fig. S7 CO-TPR plots of CO$_2$ desorbed from the reduced CuCe$_{10}$/TiO$_2$ and Cu/TiO$_2$ samples in a 100 mL/min CO stream with a 10 K/min heating rate.