Transformation of y-valerolactone to 1,4-pentanediol and 2-

methyltetrahydrofuran over Zn-promoted Cu/Al₂O₃ catalyst

(Supporting information)

Qiang Liu^{a,b,c}, Zhenbo Zhao^b, Masahiko Arai^{a,c}, Chao Zhang^{*a,c}, Ke Liu^{a,b,c}, Ruhui Shi^{a,c}, Peixuan Wu^{a,c}, Zhuangqing Wang^{a,c}, Weiwei Lin^{a,c}, Haiyang Cheng^{a,c}, and Fengyu Zhao^{*a,c}

^a State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China

^b School of Chemistry and Life Science, Changchun University of Technology, Changchun 130022, PR China

^c Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China

*Corresponding author, Tel:+86-431-85262410; Fax: +86-431-85262410;

E-mail address: czhang@ciac.ac.cn, zhaofy@ciac.ac.cn

Entry	Catalyst ^a	Loading		
		Cu (wt.%) ^b	Zn (wt.%) ^b	Zn/Cu (-) ^c
1	Cu/Al ₂ O ₃	9.9	/	/
2	$Zn_{0.5}Cu/Al_2O_3$	9.5	4.5	0.4
3	$Zn_{1.0}Cu/Al_2O_3$	8.4	7.9	0.8
4	$Zn_{1.5}Cu/Al_2O_3$	7.9	10.7	1.3
5	$Zn_{2.0}Cu/Al_2O_3$	6.6	13.2	1.9

Table S1. Amounts of Cu and Zn species loaded in the Al₂O₃-supported catalysts measured by ICP

a. The nominal Cu loading is 10% (Cu/Al₂O₃ in weight).

b. Cu/Al₂O₃, Zn/Al₂O₃ in weight measured by ICP.

c. Molar ratio

Entry	Catalyst	Amount		
		Cu (wt.%) ^a	Al (wt.%) ^b	
1	Cu/Al ₂ O ₃ -fresh	9.9	47.8	
2	Cu/Al ₂ O ₃ -used	9.4	47.9	

Table S2. The amounts of Cu and Al species in the fresh Cu/Al₂O₃ and used Cu/Al₂O₃ catalysts measured by ICP

a. The nominal Cu loading is 10% (Cu/Al₂O₃ in weight).

b. The amount of Al of 10%Cu/Al₂O₃ in weight measured by ICP.

Reaction conditions: 0.1 g catalyst, 10.0 mL 1,4-dioxane, 2.0 mmol GVL, 200°C, 4 MPa H₂, 3 h.

Figure S1. XRD patterns of the calcined γ -Al₂O₃ support and Cu/Al₂O₃ and Zn_xCu/Al₂O₃ with Zn/Cu molar ratios of 0.5, 1.0, 1.5, and 2.0, respectively.

Figure S2. The change of the product selectivity with time for the (A) Cu/Al_2O_3 , (B) $Zn_{0.5}Cu/Al_2O_3$, (C) $Zn_{1.0}Cu/Al_2O_3$, (D) $Zn_{1.5}Cu/Al_2O_3$, and (E) $Zn_{2.0}Cu/Al_2O_3$ catalysts. The data were collected at reaction time of 1/6, 1, 2, and 12 h, respectively. Reaction conditions: 0.1 g catalyst, 10.0 mL 1,4-dioxane, 2.0 mmol GVL, 200°C, 4 MPa H₂.

Figure S3. TGA of the used Cu/Al₂O₃ and Zn_{1.5}Cu/Al₂O₃ catalysts. Reaction conditions: 0.1 g catalyst, 10.0 mL 1,4-dioxane, 2.0 mmol GVL, 200°C, 4 MPa H₂, 3 h.

Figure S4. TEM images of the used Cu/Al_2O_3 (A, B) and $Zn_{1.5}Cu/Al_2O_3$ (C, D) catalysts. The blue rings and red parallel lines showed the lattice of the nanoparticles.