Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information

For

Efficient synthesis of methanol and ethylene glycol via the hydrogenation of CO₂derived ethylene carbonate on Cu/SiO₂ catalysts with balanced Cu⁺-Cu⁰ sites

Tongyang Song, ^a Wei Chen, ^a Yuanyuan Qi, ^a Jiqing Lu, ^b Peng Wu, ^a Xiaohong Li ^{a,*}

^a Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Rd., Shanghai 200062, PR China

^b Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China

Fig. S1 N₂O titration profiles of various Cu/SiO₂ catalysts.

The N₂O titration process includes the following steps [1-3]: CuO+H₂ \rightarrow Cu+H₂O (1); 2Cu+N₂O \rightarrow Cu₂O+N₂ (2); Cu₂O+H₂ \rightarrow 2Cu+H₂O (3).

According to the XRD results, the as-calcined Cu/SiO₂-MHT, Cu/SiO₂-AEH and Cu/SiO₂-AE catalysts mainly showed the characteristic diffractions of copper phyllosilicate and no obvious CuO diffraction was observed. After reduction, the three Cu/SiO₂ catalysts (MHT, AEH and AE) contained Cu₂O species and a little Cu⁰ species. As well known, the Cu⁺ from reduction of copper phyllosilicate is very stable, and it is difficult to be further reduced to Cu⁰. If we use N₂O titration to calculate the Cu dispersion, the hydrogen consumption for the three Cu/SiO₂ catalysts (MHT, AEH and AE) catalysts will decrease a lot in the first step, resulting in Cu dispersion increased unreasonably. Hence, the Cu dispersion calculated by N₂O titration only represents the dispersion of a small amount of copper on Cu/SiO₂ catalysts (MHT, AEH and AE) catalysts. On the contrary, as-calcined Cu/SiO₂-PG contained large amount of CuO. The Cu dispersion from the N₂O titration is in good agreement with that from the XRD and TEM results. Therefore, we adopted the Cu dispersion from TEM results to calculate the TOF values.

Fig. S2 *In situ* FTIR spectra of MeOH adsorbed on the Cu/SiO₂-MHT catalyst at 180 °C. Besides the IR bands of the gaseous MeOH, one band centered at about 2125 cm⁻¹ was also detected, which is assigned to Cu⁺-CO.

Fig. S3 XRD patterns of the fresh and the spent Cu/SiO₂-MHT catalyst after 10 cycles.

Fig. S4 TEM image of the spent Cu/SiO₂-MHT catalyst after 10 cycles.

Fig. S5 The correlation of acid amount and the sum copper surface areas for Cu-based catalysts.

Fig. S6 Charge distribution of EC molecule calculated by DFT.

References

- [1] C. Van Der Grift, A. Wielers, B. Jogh, J. Van Beunum, M. De Boer, M. Versluijs-Helder, J. Geus, J. Catal., 1991, 131, 178-189.
- [2] C. Zhang, L. Wang, J. Liu, Y. Yang, P. He, Y. Cao, J. Chen, H. Li, ChemCatChem, 2018, 10, 4617-4628.
- [3] F. Deng, N. Li, S. Tang, C. Liu, H. Yue, B. Liang, Chem. Eng. J., 2018, 334, 1943-1953.