Supporting Information

Graphene Quantum Dots Sensitized Zn-MOF for Efficient Visible-Light-Driven Carbon Dioxide Reduction

Ding Wei,*a Wang Tang,a Yundan Gana and Xiqing Xu*b

^aXi'an Modern Chemistry Research Institute, Xi'an, Shanxi 710061, P. R. China.

^bSchool of Materials Science & Engineering, Chang'an University, Xi'an, Shanxi 710061, P. R. China.

Figure S1. Statistical diameter for the synthesized Zn-Bim-His-1 nanoparticles.

Figure S2. Statistical diameter for the hole on the surface of Zn-Bim-His-1 nanoparticles.

Figure S3. Statistical lateral size for GQDs.

Figure S4. HRTEM image of Zn-Bim-His-1@GQDs in higher resolution.

Figure S5. Histogram of the zeta potential value of Zn-Bim-His-1, GQDs and Zn-Bim-His-1@GQDs.

Figure S6. TEM of Zn-Bim@GQDs (a), Zn-Bim-His-2 (b) and Zn-Bim-His-2@ GQDs (c).

Figure S7. PXRD patterns of Zn-Bim-His-1, Zn-Bim-His-1@GQDs, pure ZnO (JCPDF NO. 79-205) and that simulated from crystal structure data for ZIF-7.^{S1} The result shows the absence of impurities such as ZnO from the as prepared samples.

Figure S8. ¹H-NMR spectra for the Zn-Bim-His-1 sample. For ¹H-NMR analysis, the solution was prepared by digesting 20 mg of Zn-Bim-His-1 sample in NaOH (1 M)- D_2O solution for 24 h.

Figure S9. SEM and TEM of Zn-Bim-NH₂.

Figure S10. ¹H NMR spectra for the supernatant taken from the Zn-Bim-His-1@GQDs photocatalytic reaction system under visible light irradiation for 12 h.

Figure S11. Product distribution during the photocatalytic CO₂ reduction using Zn-Bim-His-1@GQDs preparing in different pH values.

Figure S12. TEM of Zn-Bim-His-1@GQDs prepared under pH3.

Table S1. Comparison of photocatalytic performance for reduction of CO_2 with carbon dots catalyst and some noble-metal-containing systems reported in literature.

Catalyst	Light source	Sacrificial	Major product	Reference
		agent	evolution rate	
			μ mol h ⁻¹ g ⁻¹	
Zn-Bim-His-1@GQDs	$420 < \lambda < 750 \text{ nm}$	TEOA	CH ₄ : 20.9	This
				work
gold-doped carbon dots	$405 {<} \lambda {<} 720 \text{ nm}$		HCOO ⁻ : 8.5 ppm	S2
GQD-BNPTL	$420 \leq \lambda \leq 800 \text{ nm}$		CH ₃ OH: 0.7	S3
CQDs/Cu ₂ O	$\lambda > 400 \text{ nm}$		C ₂ H ₆ : 16.9	S4
ZrOCo ^{II} /IrOx/	355 nm		CO: 1.7	S5
SBA-15 silica				
ZnCr-LDH@Pt	UV		CO: 7.6	S6
C ₃ N ₄ /MgAl-LDH/Pd	500 W Hg(Xe)		CH ₄ : 0.8	S7
	lamp without filter			
RuRu' /NS-C ₃ N ₄ , Ag	$\lambda > 400 \text{ nm}$	EDTA·2Na	COOH ⁻ : 57.5	S 8
Pd-TiO ₂	$\lambda > 310 \text{ nm}$		CO: 0.4	S9
Cu ₂ S/Pt NR	450 W Xe lamp	Na_2SO_3	CO: 3.0	S10
	with a cutoff water			
	filter for the IR			
	wavelengths			
Pt-g-C ₃ N ₄ /NaNbO ₃	$\lambda >$ 420 nm		CH ₄ : 6.4	S11
Pt/SiC	simulated sunlight		CH ₄ : 13.6	S12
PbS/TiO ₂	$420 \leq \lambda \leq 610 \text{ nm}$		CO: 0.8	S13
Cu/Pt/TiO ₂	$320 < \lambda < 780 \text{ nm}$		CH ₄ : 33.0	S14
rGO/NiWO4@Au	simulated sunlight		CO: 0.9	S15

Figure S13. GC-MS spectras of the products generated from the ${}^{13}CO_2$ isotope experiments. (a) GC spectrum, (b, c) mass spectra showing ${}^{13}CH_4$ (m/z = 17) and ${}^{13}CO$ (m/z = 29) produced over Zn-Bim-His-1@GQDs.

Figure S14. XRD patterns for Zn-Bim-His-1@GQDs hybrid nanoparticles after 48 h photocatalytic test.

References

- S1 K. S. Park, Z. Ni, A. P. Côt´e, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe and O. M. Yaghi, *Proc. Natl. Acad. Sci. U. S. A.*, 2006, **103**, 10186-10191.
- S2 S. Sahu, Y. Liu, P. Wang, C. E. Bunker, K. A. S. Fernando, W. K. Lewis, E. A. Guliants, F. Yang, J. Wang and Y. P. Sun, *Langmuir*, 2014, **30**, 8631-8636.
- S3 Y. Yan, J. Chen, N. Li, J. Tian, K. Li, J. Jiang, J. Liu, Q. Tian and P. Chen, ACS Nano, 2018, 12, 3523-3532.
- S4 T. Kulandaivalu, S. Abdul Rashid, N. Sabli and T. L. Tan, Diamond Relat. Mater., 2019, 91, 64-73.
- S5 W. Kim, G. Yuan, B. A. McClure and H. Frei, J. Am. Chem. Soc., 2014, 136, 11034-11042.
- S6 K. I. Katsumata, K. Sakai, K. Ikeda, G. Carja, N. Matsushita and K. Okada, *Mater. Lett.*, 2013, 107, 138-140.
- S7 J. Hong, W. Zhang, Y. Wang, T. Zhou and R. Xu, ChemCatChem, 2014, 6, 2315-2321.
- S8 R. Kuriki, M. Yamamoto, K. Higuchi, Y. Yamamoto, M. Akatsuka, D. Lu, S. Yagi, T. Yoshida, O. Ishitani and K. Maeda, *Angew. Chem. Int. Ed.*, 2017, 56, 4867-4871.
- S9 T. Yui, A. Kan, C. Saitoh, K. Koike, T. Ibusuki and O. Ishitani, ACS Appl. Mater. Inter., 2011, 3, 2594-2600.
- S10 A. Manzi, T. Simon, C. Sonnleitner, M. Döblinger, R. Wyrwich, O. Stern, J. K. Stolarczyk and J. Feldmann, J. Am. Chem. Soc., 2015, 137, 14007-14010.
- S11 H. Shi, G. Chen, C. Zhang and Z. Zou, ACS Catal., 2014, 4, 3637-3643.
- S12 C. Han, B. Wang, N. Wu, S. Shen and Y. Wang, Appl. Surf. Sci., 2020, 515, 145952.
- S13 C. Wang, R. L. Thompson, P. Ohodnicki, J. Baltrus and C. Matranga, J. Mater. Chem., 2011, 21, 13452-13457.
- S14 Q. Zhai, S. Xie, W. Fan, Q. Zhang, Y. Wang, W. Deng and Y. Wang, *Angew. Chem. Int. Ed.*, 2013, 52, 5776-5779.
- S15 J. Shin, J. N. Heo, J. Y. Do, Y. I. Kim, S. J. Yoon, Y. S. Kim and M. Kang, J. Ind. Eng. Chem., 2020, 81, 427-439.