Understanding co-effects of manganese and cobalt on the enhanced SCR performance for Mn_xCo_{1-x}Cr₂O₄ spinel-type catalysts

Erhao Gao^{a,b}, Bei Huang^{a,b}, Zilong Zhao^c, Hua Pan^c, Wei Zhang^{a,b}, Younan Li^{a,b}, Matthew T.

Bernards^d, Yi He^{a,e*}, and Yao Shi^{a,b}

^a College of Chemical and Biological Engineering, Zhejiang University, Hangzhou,

310027, China

^b Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China

^c College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China

^d Department of Chemical and Materials Engineering, University of Idaho, Moscow 83844, USA

^e Department of Chemical Engineering, University of Washington, Seattle,
Washington 98195, USA

Characterization and theoretical computation

Catalyst Characterization

X-ray diffraction (XRD) patterns were characterized by an Ultima IV XRD powder polycrystalline diffractometer with a scanning rate of 1°C min⁻¹. Raman spectra were obtained with a Jobin-Yvon LabRamHRUV spectrometer with a scanning range of 100-800 cm⁻¹. N₂ adsorption-desorption isotherms were obtained at 77 K with a Micromeritics ASAP-2460. The samples were treated with pure nitrogen at 400 °C for 1 h before the analysis. X-ray photoelectron spectroscopy (XPS) data were obtained with a Thermo ESCALAB 250XI electron spectrometer. The binding energies were referenced to the C 1s line at 284.8 eV from adventitious carbon. Scanning electron microscopy (SEM) micrographs of the samples were recorded with a Zeiss SIGMA HD, and the elemental distribution of the samples were characterized with energydispersive X-ray (EDX) analysis. The data for ammonia temperature-programmed desorption (NH₃-TPD), and hydrogen temperature-programmed reduction (H₂-TPR) were recorded on an AutoChem II 2920 with a thermal conductivity detector (TCD). The samples were pretreated at 400 °C in He for 1 h prior to the experiments. For the NH₃-TPD experiments, the samples were exposed to a flow of 10% vol. NH₃ in He for 1 h, then NH₃ residues in the reactor were removed by a pure He purge for 0.5 h. Finally, the temperature was raised from 30 to 450°C in He at a rate of 10°C min⁻¹. For H₂-TPR experiments, the samples were also cooled down to room temperature, then the temperature was raised from 30 to 800°C at a rate of 10°C min⁻¹ in a flow of 5 vol.% H_2 in He.

Theoretical computation

All calculations were performed based on DMol³ implemented in Materials Studio 2017^{R2 1}, in which the Perdew-Burke-Ernzerhoff (PBE) ² functional in generalized gradient approximation (GGA) ³ was used to calculate the exchange-correlation potential. The following three convergence criteria were used for the geometry optimization and energy calculation: the atomic forces $(2.0 \times 10^{-3} \text{ Hartree/Å})$, maximum displacement $(5.0 \times 10^{-3} \text{ Å})$, and total energy variation $(1.0 \times 10^{-5} \text{ Hartree})$. The molecular orbitals were expanded using a double numerical basis set with polarization functions (DNP). The core electrons were treated using the DFT semicore pseudopots (DSPP) method. The Monkhorst-Pack k-point grid was set as a $3 \times 3 \times 1$. A p(2 × 2) slab exposing the (100) plane of CoCr₂O₄ with six atomic layers in this work. A 15 Å vacuum layer was placed above the surface slab to avoid interference from the imaging surface slabs ⁴. The bottom three layers were fixed while the top three layers were relaxed during the calculation. The affinity between the surface and adsorbate is reflected by adsorption energy (*E_{ads}*), which is defined as:

$$E_{ads} = E_{sub} + E_x - E_{total}$$

Where E_{sub} and E_x denote the energy of catalyst model and gas molecule, respectively, and E_{total} denotes the total energy of the system. A smaller value of E_{ads} indicates a stronger adsorption affinity.

XPS analysis

The Co $2p_{3/2}$ XPS spectra were fit with three peaks. The sub-band at 780.4-780.7 eV was assigned to Co³⁺, the sub-band at 782.4-783.0 eV was assigned to Co²⁺, and the sub-band around 786.8 eV was the satellite peak of Co^{2+ 5}. The Mn $2p_{3/2}$ were fit with three peaks representing Mn²⁺ (640.0-640.5 eV), Mn³⁺ (641.2-641.8 eV), and Mn⁴⁺ (642.5-643.3 eV), respectively ⁶⁻⁸. The Cr $2p_{3/2}$ spectra were fit with three peaks. The bands centered at 575.5-575.7 eV, 576.7-576.9 eV, and 578.9-579.2 eV were attributed to Cr²⁺, Cr³⁺, and Cr⁵⁺, respectively ⁹⁻¹¹. The O 2p spectra were fit with two peaks representing chemisorbed oxygen (531.4-531.6 eV, denoted as O_a) and lattice oxygen species (530.3-530.5 eV, denoted as O_β) ¹².

Catalyst samples	<i>T₉₀</i> operation window	GHSV	HSV Ref.		
$Mn_{0.1}Co_{0.9}Cr_2O_4$	166-393 °C	112,000 h ⁻¹			
	199-384 °C	162,000 h ⁻¹	This work		
V ₂ O ₅ -WO ₃ /TiO ₂	260-425 °C	60,000 h ⁻¹	Appl. Catal. B-Environ. 168-169 (2015): 195-202		
Mn-Ni bi-metal oxide	125-275 °C	64,000 h ⁻¹	Appl. Catal. B-Environ. 148-149 (2014) 114-122.		
$Mn_{0.05}Co_{0.95}O_{x}$	160-190 °C	60,000 h ⁻¹	J. Phys. Chem. C. 119 (2015) 22924-22933.		
$Mn_xCo_{3-x}O_4$ nanocages	125-350 °C	38,000 h ⁻¹	ACS Catal. 4 (2014) 1753-1763.		
3D-MnCo ₂ O ₄	90-250 °C	32,000 h ⁻¹	Nanoscale 7 (2015) 2568-2577.		
Mn ₂ CoO ₄ @rGO	130-200 °C	30,000 h ⁻¹	Chem. Eng. J. 333 (2018) 467-476.		
Sphere-like Mn _x Co _{3-x} O ₄	200-300 °C	23,000 h ⁻¹	Ind. Eng. Chem. Res. 50 (2011) 6668–6672.		
Co ₃ O ₄ nanorods	135-215 °C	30,000 h ⁻¹	Appl. Catal. B-Environ. 129 (2013) 491-500.		
Co(3)-Mn/TiO ₂	200-275 °C	40,000 h ⁻¹	ACS Catal. 5 (2015) 6069-6077.		
$Ce_{0.8}W_{0.2}O_x$	215-420 °C	125,000 h ⁻¹	J. Mater. Chem. A. 8 (2020) 6717-6731		

Table S1. A comparison of T_{90} operating windows over various SCR catalysts and different GHSVs

	NH ₃ -CoCr ₂ O ₄				NH ₃ -Mn _{0.1} Co _{0.9} Cr ₂ O ₄				
-	Co site	Cr site	OH site		Co site	Cr site	Mn site	OH site	
$d_{N-Metal}/d_{O-H}$	2.062	2.150	1.278		2.054	2.140	2.201	1.045	
d_{N-HI}	1.025	1.023	1.022		1.023	1.023	1.023	1.022	
d_{N-H2}	1.022	1.023	1.023		1.017	1.024	1.023	1.022	
d_{N-H3}	1.030	1.023	1.022		1.038	1.023	1.031	1.034	
$q_{\rm NH3}$	0.268	0.280	0.285		0.272	0.297	0.314	0.291	
E_{ads}	-0.87	-0.75	-0.98		-0.97	-0.95	-1.36	-1.19	

Table S2. Calculated bond length (*d*; Å), Mulliken charge (*q*; e), and adsorption energy (E_{ads} ; eV) for NH₃ adsorption on CoCr₂O₄ and Mn_{0.1}Co_{0.9}Cr₂O₄ catalysts.

Figure S1. NO_x conversion over XCr_2O_4 (X = Mn, Fe, Co, Ni, and Cu) catalysts in the temperature range of 100 to 400 °C.

Figure S2. Representative energy-dispersive X-ray (EDX) spectroscopy elemental mapping of different elemental species distribution in (a) CoCr₂O₄, (b) Mn_{0.05}Co_{0.95}Cr₂O₄, (c) Mn_{0.1}Co_{0.9}Cr₂O₄, (d) Mn_{0.2}Co_{0.8}Cr₂O₄, and (e) Mn_{0.3}Co_{0.7}Cr₂O₄ catalysts.

Figure S3. All of the possible adsorption sites for (A) Co and (B) Cr cations in the

 $Mn_{0.1}Co_{0.9}Cr_2O_4\ model.$

Figure S4. The optimized structures of adsorbed NH3 on all of the possible Co and Cr sites on

 $Mn_{0.1}Co_{0.9}Cr_2O_4$ model

The effect of internal diffusion on $Mn_{0.1}Co_{0.9}Cr_2O_4$ catalyst was studied and the results are presented in Figure S5. The catalysts with particle sizes of 80-100, 60-80, 40-60, and 20-40 meshes were prepared respectively and tested at 200 °C. It can be seen that when the particle size was 80-100 meshes, 60-80 meshes and 40-60 meshes, the NO_x conversion was around 99%, while the NO_x conversion decreased to 90.5% when the particle sizes were 20-40 meshes. The particle sizes of $Mn_{0.1}Co_{0.9}Cr_2O_4$ catalyst tested were 40-60 meshes in this work, which suggests that the internal diffusion was eliminated under this condition.

Figure S5. The effect of internal diffusion on Mn_{0.1}Co_{0.9}Cr₂O₄ catalyst at 200 °C

The effect of external diffusion on $Mn_{0.1}Co_{0.9}Cr_2O_4$ catalyst was studied and the results are presented in Figure S6. Samples weighing 0.1 g (W₁) and 0.15 g (W₂) were tested respectively under different GHSVs (60,000-30,000 h⁻¹). It can be seen that all the points can be connected into one curve, which suggests that the external diffusion was eliminated under the GHSV of 112,000 h⁻¹.

Figure S6. The effect of external diffusion on Mn_{0.1}Co_{0.9}Cr₂O₄ catalyst at 200 °C

References:

- 1. Delley, B., The Journal of Chemical Physics, 2000, 113, 7756-7764.
- 2. Hammer, B., Phys. Rev. B., 1999, 59, 7413-7421.
- 3. Perdew, J.P., Burke, K. and Wang, Y., Phys. Rev. B., 1996, 54, 16533-16539.
- 4. Yang, Y., Liu, J., Liu, F., Wang, Z., Ding, J. and Huang, H., Chem Eng J, 2019, 361, 578-587.
- 5. Li, X., Ao, Z., Liu, J., Sun, H., Rykov, A.I. and Wang, J., Acs Nano, 2016, 10, 11532-11540.
- 6. Thirupathi, B. and Smirniotis, P., Appl. Catal. B, 2011, 110, 195-206.

7. Wan, Y., Zhao, W., Tang, Y., Li, L., Wang, H., Cui, Y., Gu, J., Li, Y. and Shi, J., *Applied Catalysis B: Environmental*, 2014, **148-149**, 114-122.

8. Yang, S., Wang, C., Li, J., Yan, N., Ma, L. and Chang, H., *Appl Catal B-Environ*, 2011, **110**, 71-80.

- 9. Chen, Z., Yang, Q., Li, H., Li, X., Wang, L. and Chi Tsang, S., J Catal, 2010, 276, 56-65.
- 10. Russo, N., Fino, D., Guido, S. and Specchia, V., J Catal, 2005, 229, 459-469.
- 11. Biesinger, M., Payne, B., Grosvenor, A., Lau, L., Gerson, A. and Smart, R., *Appl Surf Sci*, 2011, **257**, 2717-2730.
- 12. Zhang, L., Shi, L., Huang, L., Zhang, J., Gao, R. and Zhang, D., Acs Catal, 2014, 4, 1753-1763.