Supporting information

The study on acidity of sulfated CuO layers grown by surface reconstruction of Cu₂O exposed with specific facets

Yanan Wu^a, Xin Chen^a, Daofeng Huang^a, Li Zhang^a, Yuanhang Ren^a, Gangfeng Tang^a, Xueying Chen, Bin Yue^{a,*}, Heyong He^{a,*}

^a Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, P. R. China

*Corresponding authors. Tel: +86-21-31243916; E-mail addresses: yuebin@fudan.edu.cn, heyonghe@fudan.edu.cn.

Fig S1 XRD patterns of pristine Cu₂O samples.

Fig S2 SEM and TEM images of (a, b) C111, (c, d) C100/111, (e, f) C100. The insets of b, d, f are corresponding SAED patterns.

Fig S3 ^{31}P MAS NMR spectra of pristine Cu₂O samples adsorbed with TMP.

Samples	Brønsted acid density (μmol·g ⁻¹)	Lewis acid density (µmol·g ⁻¹)	Total acid density (μmol·g ⁻¹)
C111	Not observed	11.4	11.4
C100/111	Not observed	7.30	7.30
C100	Not observed	14.7	14.7

Table S1 Acid properties of pristine Cu₂O characterized by ³¹P MAS NMR

 Table S2 Chemical shift of all peaks located between -25 to -50 ppm in ³¹P MAS

 NMR spectra of SCO samples after deconvolution

	SC0111	SCO100/111	SCO100
	(ppm)	(ppm)	(ppm)
Type A Lewis acid	-25.0	-25.2	-26.1
	-29.9	-30.1	-31.0
	-34.8	-35.0	-35.9
	-39.7	-39.9	-40.8
Type B Lewis acid	-29.9	-30.2	-30.8
	-34.9	-35.2	-35.8
	-39.9	-40.2	-40.8
	-44.9	-45.2	-45.8
Type C Lewis acid	-31.8	-32.2	-32.3
	-36.6	-37.0	-37.1
	-41.4	-41.8	-41.9
	-46.2	-46.6	-46.7

Fig. S4 Analysis of Lewis acid sites on SCO samples.

Fig. S5 Correlation between total density of Type B and C Lewis acid and yield of coumarin on SCO samples.