Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Tailoring aromatic ring-terminated edges of g-C₃N₄ nanosheets for efficient

photocatalytic hydrogen evolution with simultaneous antibiotic wastewater

removal

Zhihong Chen, Shanshan Li, Yannan Peng, Chun Hu*

Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality

and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou

University, Guangzhou 510006, China.

* Corresponding Author:

Phone: +86-20-39346609; fax: +86-10-62923541

E-mail: huchun@rcees.ac.cn

Figure Caption:

Figure S1 The corresponding EDS spectra of CNS (A) and ARCNS (B)

Figure S2 (A) The dual-functional photocatalytic activity of CNS and ARCNS without using Pt as co-catalyst; (B) TEM of ARCNS-3 recovered after dual-functional photocatalytic reaction tests.

Figure S3 Changes in the characteristic absorption of TC at different irradiation times in the present of ARCNS-3.

Figure S4 (A) The dual-functional photocatalytic activity and (B) UV-vis diffuse-reflectance spectrum and wavelength-dependent AQY of ARCNS-3 under under different monochormatic light irradiation.

Figure S5 Total ion chromatograms of TC solution after 2 h dual-functional photocatalytic reaction in the present of ARCNS-3

Figure S6 The BET surface area of the as-prepared samples.

Figure S7 The EPR spectra of CNS and ARCNS-3 in dark and light condition.

Table Caption:

Table S1 Identification of the intermediates with small molecular weight of TC by GC-MS.

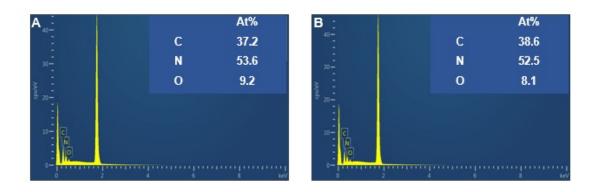


Figure S1 The corresponding EDS spectra of CNS (A) and ARCNS (B)

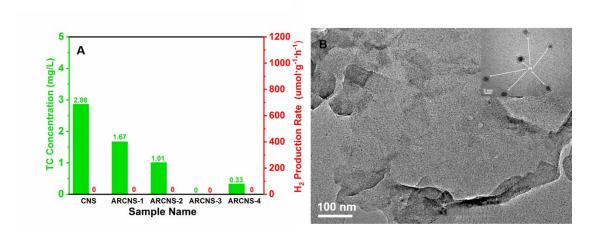


Figure S2 (A) The dual-functional photocatalytic activity of CNS and ARCNS without using Pt as co-catalyst; (B) TEM of ARCNS-3 recovered after dual-functional photocatalytic reaction tests.

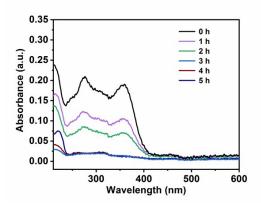


Figure S3 Changes in the characteristic absorption of TC at different irradiation times in the present of ARCNS-3.

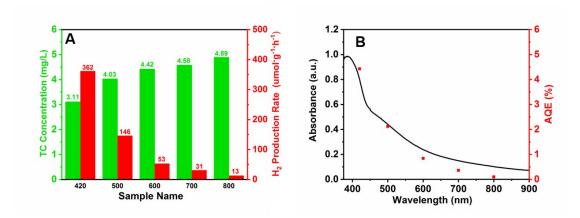


Figure S4 (A) The dual-functional photocatalytic activity and (B) UV-vis diffuse-reflectance spectrum and wavelength-dependent AQY of ARCNS-3 under under different monochormatic light irradiation.

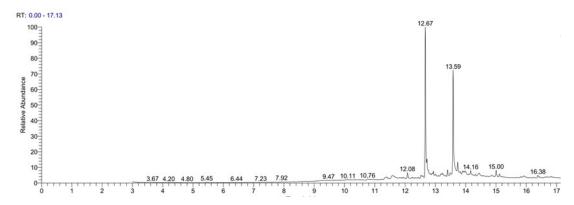


Figure S5 Total ion chromatograms of TC solution after 2 h dual-functional photocatalytic reaction in the present of ARCNS-3

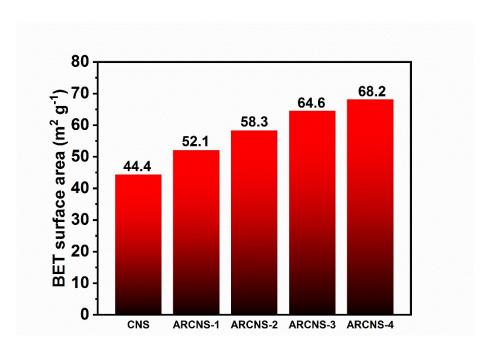


Figure S6 The BET surface area of the as-prepared samples.

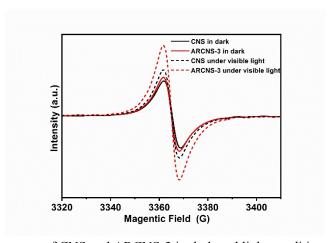


Figure S7 The EPR spectra of CNS and ARCNS-3 in dark and light condition.

Table S1 Identification of the intermediates with small molecular weight of TC by GC-MS.

Radical Intermiate	Retention Time/min	m/z	Possible Molecular Structure
1	5.45	133	O
2	7.92	146	H ₂ N
3	10.76	222	но ОН
4	12.08	98	НО
5	12.67	118	но
6	13.59	116	ОН
7	14.16	90	ОН
8	15.00	207	NH O
9	16.38	210	O OM OH OH