Supporting Information

Synergistic effect on BCN nanomaterials for the oxygen reduction reaction- A kinetic and mechanistic analysis to explore the active sites

E.A. Anook Nazer and Azhagumuthu Muthukrishnan*

*School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala (P.O), Vithura-695551, Kerala, India

Email: muthukrishnan@iisertvm.ac.in

Materials

Graphite powder (>99) and sodium nitrate (99.99%) were purchased from Sigma Aldrich. Sulphuric acid (98\%), potassium permanganate (98.5\%), hydrogen peroxide (30\%), hydrochloric acid (37\%) and boric acid (99.99\%) were obtained from Merck. Dicyandiamide ($>98 \%$) was obtained from TCI.

Powder X-ray Diffraction spectroscopy

Figure S1. PXRD pattern of B-rGO compounds at various initial boron content.

Chracterization

Figure S2. Raman spectra of B-rGO compounds at the various initial boron contents compared with the GO.

Figure S3. Initial boron content (numbers in the x-axis indicate the fraction of the boron reference to the carbon, example $\mathrm{C}: \mathrm{B}=1: n$, where n represents the values in the x -axis).solid line indicates the polynomial fitting ($5^{\text {th }}$ order) of the values.

Figure S4. XPS survey spectra of the compounds (a) GO, (b) B-rGO, (c) N-rGO and (d) B\&NrGO.

Figure S5. Core level C-1s XPS spectrum of GO, deconvoluting into various oxygen functionalities.

Figure S6. Core level (a) N-1s and (b) B-1s XPS spectra of the B-rGO+N-rGO

The existence of the B and N is observed in the physical mixture of $1: 1$ ratio $\mathrm{B}-\mathrm{RGO}$ and $\mathrm{N}-\mathrm{RGO}$ compounds. The shift in the $\mathrm{N}-1 \mathrm{~s}$ spectra to the low binding energy side is observed due to the interaction with the electropositive element (Boron) demonstrated the existence of the B-N interaction. In the physical mixture, the Py-N and Gr-N peaks are appeared at 397.7 eV and 399.9 eV , respectively. This is 0.3 to 0.4 eV shift from the values observed for $\mathrm{B} \& \mathrm{~N}-\mathrm{RGO}$ and $\mathrm{N}-\mathrm{RGO}$. Besides, the $\mathrm{B}-1 \mathrm{~s}$ spectra shifts to the higher binding energy (191.0 eV) compared with the B\&N-RGO (189.4 eV), indicating the interaction of boron with the higher electronegative element, i.e. nitrogen. The formation of chemical
bonds between B and N could shift the peak to the larger extent. Rao et al. [Panchakarla, Adv. Mater., 2009, 21, 4726-4730] reported the formation of the B-N bonds during the copyrolysis of activated charcoal with boric acid and urea. The deconvoluted $\mathrm{N}-1$ s peak at 397.1 eV corresponds to $\mathrm{B}-\mathrm{N}$ bond, which is approximately 1 eV shift from the normal C-N (pyridinic nitrogen) bond. Hence the physical mixture of B-rGO and N-rGO does not have any chemical bonds. Also, the B-rGO and N-rGO were synthesised separately, the B and N present in two different layers of graphene. Hence, The B-rGO and N-rGO may interact due to their electronegativity difference in the uniformly dispersed solution.

Figure S7. Elemental mapping of individual atoms present in the B\&N-rGO are shown for the elements $\mathrm{C}(\mathrm{a}), \mathrm{N}(\mathrm{b}), \mathrm{O}(\mathrm{c}), \mathrm{B}(\mathrm{d})$ and overlap of all the above (e).
(a)

(b)

(c)
(d)

Figure S8. BET isotherms of (a) GO, (b) B-rGO, (c) N-rGO and (d) B\&N-rGO

Electrochemistry

(a)

(b)

Figure S9. RRDE voltammograms for the ORR on (a) B-rGO and (b) N-rGO at various amounts of initial boron and nitrogen precursor at O_{2}-saturated 0.1 M KOH .

Figure S10. RRDE voltammograms of the ORR on (a) B-rGO, (b) N-rGO and (c) B\&N-rGO catalysts at various loading densities. The rotation speed is 1600 rpm , and at the scan rate of 10 $\mathrm{mV} / \mathrm{sec}$.

Figure S11. Tafel plots of the ORR on B-rGO, N-rGO and B\&N-rGO. The Current densities are taken in the kinetic-controlled region, i.e. close to the onset potential.

Table S1: BET Surface area measurement for all the three catalysts.

Compound	BET S.A $\left(\mathrm{m}^{2} \mathrm{~g}^{-1}\right)$	Pore size (nm)	Pore Volume $\left(\mathrm{cm}^{3} \mathrm{~g}^{-1}\right)$
GO	25.8	15.0	0.10
B-rGO	51.3	12.3	0.16
N-rGO	187.1	21.1	0.99
B\&N-rGO	100.5	15.6	0.39

Table S2: The onset potentials of all the three compounds studied.

Loading density $\left(\mathrm{mg} \mathrm{cm}^{-2}\right)$	Onset potential vs. RHE (V)*		
	N-rGO	B-rGO	B\&N-rGO
0.1	0.736	0.742	0.765
0.2	0.762	0.789	0.79
0.3	0.797	0.803	0.803
0.4	0.813	0.806	0.842
0.5	0.827	0.804	0.843

*the onset potential is the potential at which the current reaches $0.1 \mathrm{~mA} \mathrm{~cm}^{-2}$.

Table S3: Tafel slopes for the compounds studied in this work

Compounds	Tafel slope $\left(\mathrm{mV} \mathrm{dec}^{-1}\right)$
B-rGO	66.8
N-rGO	71.9
B\&N-rGO	61.8

Damjanovic model

The kinetics of the ORR was studied using the Damjanovic model shown below

$$
\begin{aligned}
& \mathrm{O}_{2}^{b} \rightarrow \mathrm{O}_{2}^{*} \xrightarrow{2 \mathrm{H}_{2} \mathrm{O}, 4 e^{-}} 4 \mathrm{OH}^{-} \\
& \xrightarrow{\mathrm{H}_{2} \mathrm{O}, 2 e^{-}} \mathrm{HO}_{2}^{-} \xrightarrow{\mathrm{H}_{2} \mathrm{O}, 2 e^{-}} \\
& { }^{\downarrow} \mathrm{O}_{2}^{-b}
\end{aligned}
$$

Scheme S1. Kinetic model for the ORR proposed by Damjanomic et al. b and $*$ refers the bulk and surface concentrations, respectively. The direct pathway is the reduction of O_{2} to $\mathrm{H}_{2} \mathrm{O}$ by 4electron. The stepwise reduction of O_{2} to $\mathrm{H}_{2} \mathrm{O}_{2}$ by $2 \mathrm{e}\left(k_{2}\right)$ followed by the reduction of $\mathrm{H}_{2} \mathrm{O}_{2}$ to $\mathrm{H}_{2} \mathrm{O}$ by $2 \mathrm{e}\left(k_{3}\right)$.

The number of electron (n) and the percentage of $\mathrm{H}_{2} \mathrm{O}_{2}$ estimated using the disk and ring currents from the rotating ring-disk electrode voltammetry. The equations are as shown below

$$
n=\frac{4 I_{D}}{I_{D}+\frac{I_{R}}{N}} \quad \text { and } \quad \%_{2} O_{2}=\frac{200 \frac{I_{R}}{N}}{I_{D}+\frac{I_{R}}{N}}
$$

From the mass balanced equations of the above kinetic model gives rise to the linear relations between $I_{\mathrm{D}} / I_{\mathrm{R}}$ and $I_{\mathrm{DL}} /\left(I_{\mathrm{DL}}-I_{\mathrm{D}}\right)$ and inverse square root of rotational speeds as shown below
$\frac{I_{D}}{I_{R}}=\frac{1+\frac{2 k_{1}}{k_{2}}}{N}+\frac{2\left(1+\frac{k_{1}}{k_{2}}\right)}{N Z_{2}} k_{3} \omega^{\frac{-1}{2}}$ and $\frac{I_{D L}}{I_{D L}-I_{D}}=1+\frac{k_{1}+k_{2}}{Z_{1}} \omega^{\frac{-1}{2}}$
where, I_{D} - Disk current (A)
$I_{R}-$ Ring current (A)
$I_{D L}$ - Limiting current density (A)
N - Collection efficiency (0.37)
ω - Rotational speed (s^{-1})
k_{1}, k_{2} and k_{3} - Rate constants (as explained in the Scheme S1).
$Z_{1}=0.62 D_{O_{2}}^{2 / 3} v^{-1 / 6}$
$Z_{2}=0.62 D_{H_{2} \mathrm{O}_{2}}^{2 / 3} v^{-1 / 6}$
$D_{O_{2}}$ - Diffusion coefficient of O_{2} at $0.1 \mathrm{M} \mathrm{KOH}\left(1.9 \times 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1}\right)$
$D_{H_{2} \mathrm{O}_{2}}$ - Diffusion coefficient of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $0.1 \mathrm{M} \mathrm{KOH}\left(1.27 \times 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1}\right)$
v - kinometic viscosity $\left(0.01 \mathrm{~cm}^{2} \mathrm{~s}^{-1}\right)$
The slopes and intercept of the plots $\frac{I_{D}}{I_{R}}$ vs. $\omega^{\frac{-1}{2}}$ and $\frac{I_{D L}}{I_{D L}-I_{D}}$ vs. $\omega^{\frac{-1}{2}}$ from the above equations are given below
$I_{1}=\frac{1+\frac{2 k_{1}}{k_{2}}}{N} \quad S_{1}=\frac{2\left(1+\frac{k_{1}}{k_{2}}\right)}{N Z_{2}} k_{3} \quad$ and $\quad S_{2}=\frac{k_{1}+k_{2}}{Z_{1}}$
where, I_{1} - intercept of $\frac{I_{D}}{I_{R}}$ vs. $\omega^{\frac{-1}{2}}$ plot

$$
\begin{aligned}
& S_{1-\text { slope of }} \frac{I_{D}}{I_{R}} v s . \omega^{\frac{-1}{2}} \text { plot } \\
& S_{2-\text { slope of }} \frac{I_{D L}}{I_{D L}-I_{D}} \text { vs. } \omega^{\frac{-1}{2}} \text { plot }
\end{aligned}
$$

