Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information

For

Boron-doped Graphene as Electrocatalytic Support for Iridium Oxide for Oxygen Evolution Reaction

Prerna Joshi, Hsin-Hui Huang¹, Rohit Yadav, Masanori Hara, Masamichi Yoshimura

Surface Science Laboratory, Toyota Technological Institute, Nagoya, Japan

To whom correspondence should be addressed:

Prerna Joshi; Phone & Fax: 81-52-809-1852; Email: joshiprerna2011@toyota-ti.ac.jp; joshi.prerna2011@gmail.com

	8
Figure S1	S-2
Figure S2	S-3
Figure S3	S-4
Figure S4	S-5
Figure S5	S-6
Figure S6	S-8
Figure S7	S-9
Figure S8	S-10
Figure S9	S-11
Figure S10	S-12
Figure S11	S-13, S-14
Lis	t of Tables:
Table S1	S-7
Table S2	S-7
Table S3	S-9
Table S4	S-11
Table S5	S-12

List of Figures:

¹ Present Address: Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta, Nagoya 456-8587, Japan

Figure S1 Comparison of Raman spectra for GO (red line), rGO (black line) and B-rGO (purple

line) with I_d/I_g ratio

Figure S2 SEM images of B-rGO **a**) low magnification and **b**) high magnification. **c**) EDX elemental mapping of IrO₂-B-rGO at 20 kV

Figure S3 TEM images of **a**) IrO₂-rGO and **b**) size distribution of IrO₂ nps deposited on rGO sheets. **c**) TEM image of IrO₂-B-rGO (Enlarged image of IrO₂ nps showing lattice fringes of IrO₂). **d**) TEM image of comm. IrO₂

Figure S4 a) Survey scan of GO (brown line) and IrO₂-rGO (orange line), and XPS deconvoluted spectra for **b**) GO (C1s), **c**) B-rGO (C1s), **d**) Ir powder (Ir 4f), **e**) IrO₂-rGO (C 1s) and **f**) IrO₂-rGO (Ir 4f)

Figure S5 Deconvoluted Ir4f spectra for IrO₂-rGO and IrO₂-B-rGO with contribution of Ir⁰

There is an additional way to deconvolute the Ir 4f peaks in IrO₂-B-rGO, i.e. inclusion of the contribution from metallic Ir, Ir⁰. **Figure S5** shows the revised XPS deconvolution for IrO₂-B-rGO and IrO₂-rGO with inclusion of Ir metal peaks. Considering the reported XRD of Ir (111) plane in Ir⁰, a high intensity sharp peak at 40.1° is reported ¹, which is near IrO₂ (200) plane at 40.7 ° (**Figure S6**). This states the possibility of the presence of metallic Ir in the sample. However, bearing in mind the area ratio of the deconvoluted peaks, it can be deduced that Ir^{IV} is dominant.

Elements	IrO ₂ -B-rGO (At. conc. from XPS)		
В	1.94		
С	36.93		
0	44.82		
Ir	16.10		

Table S1 Elemental composition of IrO2-B-rGO-19.6, estimated from XPS spectra

Table S2 Ir 4f peak positions and peak shift obtained from XPS spectra

Sample	Ir 4f ^{7/2} / eV	Ir 4f ^{5/2} / eV	Peak Shift from Rutile type unsupported IrO ₂ ² / eV
Ir powder	60.9	63.9	0.9
IrO ₂ -rGO	61.4	64.4	0.4
IrO ₂ -B-rGO	61.2	64.2	0.6
Rutile type unsupported IrO ₂	61.8	64.8	0.0

Figure S6 XRD patterns of the catalyst and the initial precursors, GO (purple line), IrO₂-rGO (black line), B-rGO (red line), IrO₂-B-rGO (blue line)

Potential (V) vs RHE Figure S7 LSV profiles of B-rGO with various GO: BA weight ratio in 0.5 M H₂SO₄ electrolyte solution

	GO : BA (wt./wt. %)					
Elements	1:1		1:3		1:5	
	At. %	Wt. %	At. %	Wt. %	At. %	Wt. %
В	2.82	2.33	2.69	2.34	2.14	1.87
С	88.92	86.66	85.92	82.86	84.58	80.37
0	8.14	10.57	10.77	13.84	11.96	15.15

Table S3 Elemental composition of B-rGO, estimated from SEM-EDX analysis

Figure S8 LSV curve of comm. IrO₂ (purple line) in 0.5 M H₂SO₄ solution between 1.20 to 1.65 V vs RHE (the Ir loading amount of comm. IrO₂ is 284 μ g cm⁻²) and its comparison with the synthesized catalyst IrO₂-B-rGO-19.6 (green line) and IrO₂-rGO-11.7 (black line)

Figure S9 LSV profiles of IrO₂-rGO (with 11.7 wt.% Ir) and IrO₂-B-rGO with different Ir content (3.3, 7.1 and 19.6. wt. %)

Catalyst	Catalyst loading (wt. %)	Particle Size (nm) (by TEM)	Active Surface area (m ² g _{Ir} ⁻¹) (by TEM)
IrO ₂ -B-rGO1	3.3	1.6 ± 0.3	10.6
IrO ₂ -B-rGO2	7.1	1.5 ± 0.3	24.4
IrO ₂ -B-rGO3	19.6	1.6 ± 0.4	63.1
IrO ₂ -rGO	11.7	1.5 ± 0.4	40.1

Table S4 Particle size and active surface area (calculated from TEM image)

Figure S10 The calculated Tafel slopes for OER on the IrO₂ nps on the B-doped and undoped catalysts, calculated from their LSV profiles

Table S5	Calculated	Tafel slopes	for IrO ₂ -	-B-rGO with	different	Ir content
						1

Catalyst (Ir wt. %)	Tafel slope (mV dec ⁻¹)
IrO ₂ -B-rGO-3.3	142.0
IrO ₂ -B-rGO-11.7	104.2
IrO ₂ -B-rGO-19.6	124.8
IrO ₂ - rGO -11.7	176.5

Figure S11 a) Accelerated durability test profiles for IrO₂-B-rGO-19.6 and IrO₂-rGO-11.7 (before (solid line) and after 1000 cycles (dashed line))

Figure S11 b) Chronopotentiometry profiles for IrO₂-B-rGO and IrO₂-rGO catalysts at 10 mA cm⁻² (inset: magnified image at time scale of 60 min)

Figure S11 c) ADT studies of B-rGO in 0.5 M H₂SO₄ solution between 1.20 and 1.65 V vs RHE

References:

- 1 Y. Lee, J. Suntivich, K. J. May, E. E. Perry and Y. Shao-Horn, J. Phys. Chem. Lett., 2012, 3, 399–404.
- 2 V. Pfeifer, T. E. Jones, J. J. Velasco Vélez, C. Massué, M. T. Greiner, R. Arrigo, et al., Phys. Chem. Chem. Phys., 2016, 18, 2292–2296.