Supporting information

Influence of gas impurities on the hydrogenation of CO₂ to methanol using Indium-based catalysts

Patrick Schühle^a, Maximilian Schmidt^a, Leonhard Schill^b, Anders Riisager^b, Peter Wasserscheid^a, Jakob Albert^{a*}

^a *Institute of Chemical Reaction Engineering, Friedrich-Alexander University Erlangen-Nürnberg*, 91058 Erlangen, Germany

^b Centre for Catalysis and Sustainable Chemistry, Department of Chemistry Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

*Contact details of the corresponding author:

Phone: (+49)-(0)9131-85-67417 Fax: (+49)-(0)9131-85-27421; e-mail: jakob.albert@fau.de

S1. Typical reaction procedure for methanol synthesis

Table S1.	Typical reaction	procedure for C	O ₂ hydrogenation	to methanol u	using In ₂ O ₃ /ZrC	D2 catalysts at a	total pressure
of 53.8 ± 0).5 bar. Reaction	gas was premi	ked in a ratio of CO	$D_2/H_2 = 1/3.$			

Step	Time / min	T _{reactor} / °C	V _{H2} /CO2 / Nml min ⁻¹	V _{H2} / Nml min ⁻¹	V _{He} / Nml min ⁻¹
1 (Preforming)	30	200	0	0	610
2 (Reaction)	180	225	565.5	0	0
3 (Reaction)	240	250	565.5	0	0
4 (Reaction)	180	275	565.5	0	0
5 (Reaction)	180	250	565.5	0	0
6 (Reaction)	180	225	565.5	0	0
7 (Cool down)	180	20	0	0	700

Table S2. Typical reaction procedure for CO_2 hydrogenation to methanol using a commercial Cu/ZnO/Al₂O₃ catalyst at a total pressure of 53.8 ± 0.5 bar. Reaction gas was premixed in a ratio of $CO_2/H_2 = 1/3$.

Sten	Time	T _{reactor}	V_{H_2/CO_2}	V _{H₂}	₿ V _{He}
Step	/ min	in / °C	/ Nml min ⁻¹	/ Nml min⁻¹	/ Nml min ⁻¹
1 (Preforming)	60	100	0	100	0
2 (Preforming)	30	150	0	100	0
3 (Preforming)	30	200	0	100	0
4 (Reaction)	180	200	565.5	0	0
5 (Reaction)	180	225	565.5	0	0
6 (Reaction)	240	250	565.5	0	0
7 (Reaction)	180	225	565.5	0	0
8 (Reaction)	180	200	565.5	0	0
9 (Cool down)	180	20	0	0	700

S2. Calculations

Calculation of process parameters

The calculation of process parameters to evaluate the catalytic performance was done as follows. Using the adjusted standard volume flow (V_N) and the known composition of the feed gas $(y_{i,in})$ enabled the calculation of the molar flow of component *i* entering the reactor, under consideration of the ideal gas law:

$$\dot{n}_{i,in} = \frac{p_N \cdot y_{i,in} \cdot V_N}{R \cdot T_N}$$
(Eq.-S1)

Thereby, p_N and T_N are standard pressure and temperature. Giving regard to the carbon balance of the reaction system, the total molar flow at the reactor outlet can be determined, using the molar fractions of CO₂, CO and methanol, known from online-GC analysis:

$$\dot{n}_{ges,out} = \frac{\dot{n}_{CO_2,in}}{y_{CO_2,out} + y_{CO,out} + y_{MeOH,out}}$$
(Eq.-S2)

Thereafter, the molar flow of the component *i*, leaving the reactor was calculated as follows:

$$n_{i,out} = n_{ges,out} \cdot y_{i,out}$$
(Eq.-S3)

Based on the determined molar flows, the methanol productivity was calculated in relation to the mass of the active component ($m_{catalyst} \cdot w_{active}$) in the catalyst, which was namely indium or copper:

$$P_{active} = \frac{\dot{n}_{MeOH.out} \cdot M_{MeOH}}{m_{catalyst} \cdot w_{active}}$$
(Eq.-S4)

Thereby M_{MeOH} is the molar mass of the product methanol. Selectivity to methanol was determined as a function of converted amount of carbon dioxide:

$$S_{MeOH} = \frac{\dot{n}_{MeOH,out} - \dot{n}_{MeOH,in}}{\dot{n}_{CO_{2},in} - \dot{n}_{CO_{2},out}}$$
(Eq.-S5)

S3. Catalyst batches used for parameter variation study

Catalyst batch	In-loadingª / wt.%	Composition of poisoning gas
B1 (SO ₂ -study)	10.3	505 ± 10 ppm SO ₂ in N ₂
B2 (H ₂ S-study)	10.3	610 \pm 10 ppm H ₂ S in N ₂
B3 (NO ₂ -study)	10.8	531 \pm 11 ppm NO ₂ in N ₂
B4 (NH ₃ -study)	10.4	509 \pm 10 ppm NH ₃ in N ₂
B5 (C _x H _y -study)	10.2	CH ₄ , C ₂ H ₆ , C ₂ H ₄ , C ₃ H ₈ , C ₃ H ₆ (each 5.0 \pm 0.1 vol.%) in H ₂

Table S3. Indium loading of the catalyst batches used for the investigations, determined by ICP-OES prior to catalyst poisoning and methanol synthesis.

Table S4. BET-surface area, total pore volume and intermediate pore diameter of the catalyst batches prior to poisoning.

Catalyst batch	a BET	V _{p,tot}	[¯] d _p
	/ m² g ⁻¹	/ cm ³ g ⁻¹	/ nm
B1 (SO ₂ -study)	46	0.21	18.2
B2 (H ₂ S-study)	45	0.22	19.6
B3 (NO ₂ -study)	45	0.21	18.7
B4 (NH ₃ -study)	45	0.21	18.9
B5 (C _x H _y -study)	45	0.21	18.7

S4. Temperature influence on poisoning of In₂O₃/ZrO₂-catalyst with SO₂

Fig. S1. Influence on temperature in SO₂-poisoning on the weight based sulphur content of the In₂O₃/ZrO₂ catalyst.

S5. Recycling of SO₂-poisoned In₂O₃/ZrO₂ catalyst

Fig. S2. Influence of In_2O_3/ZrO_2 catalyst poisoning with H_2S on methanol productivity. Catalyst was recycled three times to examine the reversibility of SO_2 -poisoning. Reaction conditions: $CO_2/H_2 = 1/3$; GHSV = 1952 h⁻¹; p_{total} = 53.8 ± 0.5 bar; TOS = 960 min; h_{bed} = 6.4 ± 0.1 cm; m_{cat} = 5.0 ± 0.1 g; m_{Raschig} = 5.0 ± 0.1 g; Catalyst batch B1 (see Tables S3-S4).

S6. Procedure and results for wet chemical detection of sulphates

Being able to identify weather the formed sulphates on the catalyst surface after SO_2 -poisoning were preferably bound to zirconium- or indium-species, a wet chemical detection method was applied as follows: 50 mg of solid sample (e.g. SO_2 -poisoned catalyst) was stirred for 1 h with 10 ml of boiling water in a 20 ml glass vial. Afterwards, the suspension was filtered to remove the solid residue and the liquid solution collected in a 100 ml measuring cylinder. The solid residue in the filter was washed with boiling water to fill up the measuring cylinder to its nominal volume. Afterwards, the liquid sample was examined using ICP-OES according the method described in the main manuscript. As both, $In_2(SO_4)_3$ and $Zr(SO_4)_2$ have almost equal soluble in water (539 g L⁻¹ at 20°C, respectively), the relative amount of zirconium and indium, present in the catalyst-extract, gives information about the cationic binding partner of the sulphates on the catalyst.

Sample			ion in Proportion in ו / % residue / %		in solid %	
	In	S	In	S	In	S
untreated In ₂ O ₃ /ZrO ₂	111.7	n/a	1.0	n/a	99.0	n/a
In ₂ O ₃ /ZrO ₂ 18 h-SO ₂	100.0	103.0	5.3	50.1	94.7	49.9

Table S5. Molar balance of sulphur and indium before and after wet chemical extraction; Proportions of the elements found in liquid and solid phase after the experiment, respectively.

S7. Results of nitrogen sorption analysis of the H₂S-poisoned In₂O₃/ZrO₂ catalyst

Table S6. Total surface area, total pore volume and intermediate pore diameter of untreated and 18 h-H₂S poisoned In_2O_3/ZrO_2 catalyst

Sample	<i>а</i> _{вет} / m² g ⁻¹	V _{p,tot} / cm ³ g ⁻¹	^d p ∕ nm
untreated, before reaction	45	0.22	19.6
untreated, after reaction	48	0.23	19.8
18h-H ₂ S, before reaction	45	0.22	19.6
18h-H ₂ S, after reaction	46	0.22	18.6

S8. Microscopic pictures of In₂O₃/ZrO₂ catalysts

Fig. S3. Photos (1) and light microscopy images (2) of an untreated In_2O_3/ZrO_2 catalyst before (a) and after methanol synthesis (b).

Fig. S4. Photos (1) and light microscopy pictures (2) of an In_2O_3/ZrO_2 catalyst untreated (a), after H₂S-poisoning for 18 hours (b) and after methanol synthesis (c).

S9. XPS data

Sample Preparation and Out-gassing

A few mg of finely ground powdered samples (SO₂ series: "untreated", "18h-SO₂ before reaction" and "18h-SO₂ after reaction"; H₂S series: "untreated", "18h-H₂S before reaction" and "18h-H₂S after reaction") were pressed onto carbon pads, which in turn were supported on an aluminium plate. Samples in pellet form (SO₂ series: "18h-SO₂" and "18h-SO₂, after reaction"; H₂S series: "18h-H₂S" and "18h-H₂S, after reaction") were cut in the middle using a scalpel as shown in Fig. S9a. One of the resulting halves was supported on a carbon pad, which in turn was placed on an aluminium plate, as shown in Fig. S9b. The cut faced the X-ray gun and measurements were performed at two locations, namely "Center" and "Outer Shell". The blue ellipsoids indicate the irradiation spots (100 μ m) and are roughly to scale.

Fig. S5: Representation of pellet preparation for XPS measurements. (a): cutting of pellet. (b): mounting of pellet halve and location of "Center" and "Outer Shell" measurement locations.

Sample out-gassing was performed for at room temperature in the pre-chamber of the Thermo Scientific instrument, which was also used for the actual measurements. The out-gassing was deemed to be completed once the pressure of the pre-chamber was reduced to below $8 \cdot 10^{-7}$ mbar (took around 1 h), where after the samples were transferred to the analysis chamber. Measurements were only commenced if the pressure did not rise to over $2 \cdot 10^{-7}$ mbar, otherwise additional outgassing was applied to the samples.

Data Acquisition

The samples were exposed to Al K_{α} radiation (1484.6 eV) at room temperature. A spot size of 100 µm was used. Sample charging effects were reduced using a flood gun. A "survey spectrum" (-9.92 to 1350.08 eV) using two scans was measured for each sample. The survey spectra were used to rule out the presence of unexpected impurities and to determine the 1s orbital peak position of adventitious carbon. The S2p (50 scans), Zr3d (20 scans) and In3d (20 scans) orbitals were measured separately and used for the relative concentration calculations, see equation Eq.-S6.

Data Manipulation

Data manipulation was performed with the Thermo Avantage 4.87 software. A "smart" background correction was applied to all spectra and charging effects corrected by setting the C1s signal of adventitious carbon to 284.8 eV. The area under the curve of the background corrected spectra (denoted " $A_{Orbital}$ ") was used for the relative concentration (S to Zr+In) calculations, see equation Eq.-S6.

$$\frac{S}{Zr+In} = \frac{\frac{A_{S2p}}{SF_{S2p}}}{\frac{A_{Zr3d}}{SF_{Zr3d}} + \frac{A_{In3d}}{SF_{In3d}}}$$
(Eq.-S6)

The sensitivity factors (denoted "SF_{Orbital}") were used as provided by the software.

Fig. S6. Sulphur metal ratio in the center and the outer shell of the catalyst pellet (c) after 18 h of (a) SO₂- and (b) H₂Spoisoning, determined by In3d-, Zr3d- and S2p-XPS measurements. (d) XPS -Investigation S2p-orbitals of commercial In_2S_3 and $In_2(SO_3)_4$ after air-exposure at room-temperature. (e) XPS O1s spectra of In_2O_3 , ZrO₂ and fresh In_2O_3/ZrO_2 .

The concentration of oxygen atoms next to a defect (O_{defect}) is often taken as a gauge for oxygen vacancies and can be determined by deconvolution of the O1s XPS spectra as reported by Martin et al. [12]. For unsupported In₂O₃ an O_{defect} share of 22.0 % was measured in the present study, which is close to the values reported in [12]. Deconvolution of both ZrO₂ and fresh In₂O₃/ZrO₂ was deemed unpractical due to the symmetric nature of the O1s spectra, see Fig. S6. The absence of O_{defect} in In₂O₃/ZrO₂ can be explained by the fact that about 85% of the measured oxygen atoms originate from ZrO₂ which does not exhibit such sites. Also Chen et al [18] reported nearly symmetrical O1s spectra for In₂O₃ supported on ZrO₂.

S10. XRD data

Fig. S7. XRD patterns of untreated, as well as SO₂- and H₂S-poisoned (18 h) In_2O_3/ZrO_2 catalysts before and after methanol synthesis reaction (a.r.). Reference spectra for ZrO_2 and In_2O_3 are given taken from [1].

Fig. S8. Influence of commercial Cu/ZnO/Al₂O₃ (Alfa Aeser) catalyst poisoning with SO₂ (left) and H₂S (right) on methanol productivity (top) and selectivity (bottom). Reaction conditions: $CO_2/H_2 = 1/3$; GHSV = 1952 h⁻¹; p_{total} = 53.8 ± 0.5 bar; TOS = 960 min; h_{bed} = 6.4 ± 0.1 cm; m_{cat} = 2.5 ± 0.1 g; m_{Raschig} = 7.5 ± 0.1 g; w_{Cu} = 63.5 wt.%.

Fig. S9. Photos and light microscopy pictures of non-poisoned catalysts, poisoned catalysts and poisoned catalysts after reaction. Poisoning of Cu/ZnO/Al₂O₃ performed with H_2S (left) and SO₂ (right).

S12. Deactivation of commercial Cu-catalyst by nitrogen gas impurities

Fig. S10. Influence of commercial Cu/ZnO/Al₂O₃ (Alfa Aeser) catalyst poisoning with NH₃ (top), NO₂ (middle) and a mixture of hydrocarbons in hydrogen (bottom) on methanol productivity (left) and selectivity (right). Reaction conditions: $CO_2/H_2 = 1/3$; GHSV = 1952 h⁻¹; $p_{total} = 53.8 \pm 0.5$ bar; TOS = 960 min; $h_{bed} = 6.4 \pm 0.1$ cm; $m_{cat} = 2.5 \pm 0.1$ g; $m_{Raschig} = 7.5 \pm 0.1$ g; $w_{Cu} = 63.5$ wt.%