Highly Efficient Visible-Light-Driven Reduction of Cr(VI) from Water by Porphyrin-Based Metal–Organic Frameworks: Effect of Band Gap Engineering on the Photocatalytic Activity

Nayuesh Sharma,¹ Arnab Kumar Dey,¹ Rohit Y. Sathe,¹ Ajay Kumar,² Venkata

Krishnan,² T. J. Dhilip Kumar¹ and C. M. Nagaraja*1

¹Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, India.

²School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.

Corresponding author Email: cmnraja@iitrpr.ac.in

Contents:

Experimental section

S. No.	Contents	Page No.
1	(a) Materials	S-5
2	(b) Physical measurements	S-5
3	(c) Photoelectrochemical studies	S-6

Figures and tables

S. No.	Figures and tables							
		No.						
4	Fig. S1. Powder X-ray diffraction patterns of as-synthesized PCN-222	S-7						
	and PCN-222(M) (Zn ^{II} , Cu ^{II} , Ni ^{II} , Co ^{II} , Fe ^{III} Cl, and Mn ^{III} Cl).							
5	Fig. S2. (a) Solid state UV-Vis absorption spectrum and (b) the band	S-8						
	gap plot for PCN-222.							
6	Fig. S3. UV-Vis Spectra of PCN-222 samples							
7	Fig. S4. Band gap plots for PCN-222 samples.							
8	Fig. S5. Calibration curve of Cr(VI)- diphenylcarbazide solution.	S-9						
9	Fig. S6. Cr(VI) adsorption profiles of PCN-222 MOFs in water at pH	S-10						
	1 in the absence of light.							
10	Fig. S7. Absorption spectra for photocatalytic reduction of Cr(VI) to	S-10						
	Cr(III) catalysed by PCN-222 in the presence of methanol.							
11	Fig. S8. Absorption spectra for photocatalytic reduction of Cr(VI) to	S-11						
	Cr(III) catalysed by PCN-222 in absence of acid.							
12	Fig. S9. Absorption spectra for photocatalytic reduction of Cr(VI) to	S-11						
	Cr(III) catalysed by PCN-222 in the absence of light.							
13	Fig. S10. Absorption spectra for photocatalytic reduction of Cr(VI) to	S-12						
	Cr(III) in absence of PCN-222 catalyst.							
14	Table S1. Comparison of catalytic reduction of Cr(VI) to Cr(III) using	S-13						
	various MOFs.							
15	Fig. S11. Absorption spectra for photocatalytic reduction of Cr(VI) to	S-14						

	Cr(III) catalysed by PCN-222(Mn).	
16	Fig. S12. Absorption spectra for photocatalytic reduction of Cr(VI) to	S-14
	Cr(III) catalysed by PCN-222(Fe).	
17	Fig. S13. Absorption spectra for photocatalytic reduction of Cr(VI) to	S-15
	Cr(III) with catalysed by PCN-222(Ni).	
18	Fig. S14. Absorption spectra for photocatalytic reduction of Cr(VI) to	S-15
	Cr(III) catalysed by PCN-222(Co).	
19	Fig. S15. Absorption spectra for photocatalytic reduction of Cr(VI) to	S-16
	Cr(III) with catalysed by PCN-222(Cu).	
20	Fig. S16. Absorption spectra for photocatalytic reduction of Cr(VI) to	S-16
	Cr(III) with catalysed by PCN-222(Zn).	
21	Fig. S17. Histogram showing photocatalytic reduction of Cr(VI)	S-17
	catalysed by PCN-222 and PCN-222(M) (M = Zn^{II} , Cu^{II} , Ni^{II} , Co^{II} ,	
	Fe ^{III} Cl, and Mn ^{III} Cl) within 30 min at pH 1, (b) Time-dependent plot	
	for photocatalytic reduction of Cr(VI).	
22	Fig. S18. Kinetics of photocatalytic reduction of Cr(VI) catalysed by	S-17
	PCN-222 and PCN-222(M) (M = Zn^{II} , Cu^{II} , Ni^{II} , Co^{II} , $Fe^{III}Cl$, and	
	Mn ^{III} Cl).	
23	Fig. S19. Histogram showing photocatalytic reduction of Cr(VI)	S-18
	catalysed by PCN-222 and PCN-222(M) (M = Zn^{II} , Cu^{II} , Ni^{II} , Co^{II} ,	
	Fe ^{III} Cl, and Mn ^{III} Cl) within 30 min at pH 2, (b) Time-dependent plot	
	for photocatalytic reduction of Cr(VI).	
24	Fig. S20. Kinetics of photocatalytic reduction of Cr(VI) catalysed by	S-18
	PCN-222 and PCN-222(M) (M = Zn^{II} , Cu^{II} , Ni^{II} , Co^{II} , $Fe^{III}Cl$, and	
	Mn ^{III} Cl).	
25	Fig. S21. Histogram showing photocatalytic reduction of Cr(VI)	S-19
	catalysed by PCN-222 and PCN-222(M) (M = Zn^{II} , Cu^{II} , Ni^{II} , Co^{II} ,	
	Fe ^{III} Cl, and Mn ^{III} Cl) within 30 min at pH 2, (b) Time-dependent plot	
	for photocatalytic reduction of Cr(VI).	
26	Fig. S22. Kinetics of photocatalytic reduction of Cr(VI) catalysed by	S-19
	PCN-222 and PCN-222(M) (M = Zn^{II} , Cu^{II} , Ni^{II} , Co^{II} , $Fe^{III}Cl$, and	
	Mn ^{III} Cl).	
27	Fig. S23. Histogram showing photocatalytic reduction of Cr(VI)	S-20

	catalysed by PCN-222 and PCN-222(M) (M = Zn^{II} , Cu^{II} , Ni^{II} , Co^{II} ,	
	Fe ^{III} Cl, and Mn ^{III} Cl) within 30 min at pH 2, (b) Time-dependent plot	
	for photocatalytic reduction of Cr(VI).	
28	Fig. S24. Kinetics of photocatalytic reduction of Cr(VI) catalysed by	S-20
	PCN-222 and PCN-222(M) (M = Zn^{II} , Cu^{II} , Ni^{II} , Co^{II} , $Fe^{III}Cl$, and	
	Mn ^{III} Cl).	
29	Table. S2. Comparison of catalytic reduction of Cr(VI) to Cr(III) using	S-21
	PCN-222 frameworks.	
30	Fig. S25. Absorption spectra for photocatalytic reduction of Cr(VI) to	S-22
	Cr(III) catalysed by PCN-222 in tap water.	
31	Fig. S26. Absorption spectra for photocatalytic reduction of Cr(VI) to	S-22
	Cr(III) with catalysed by PCN-222 in river water.	
32	Fig. S27. (a) Photocatalytic reduction of Cr(VI) to Cr(III) carried out	S-23
	in deionized water, tap water, and river water (b) the percentage	
	photocatalytic reduction of Cr(VI) within 25 min.	
33	Fig. S28. (a) Concentration-dependent adsorption of Cr(VI) by PCN-	S-23
	222 and PCN-222(M) (M = Zn^{II} , Cu ^{II} , Ni ^{II} , Co ^{II} , Fe ^{III} Cl, and Mn ^{III} Cl)	
	carried out under dark conditions. (b) time-dependent adsorption of	
	Cr(VI) carried out with 40 ppm concentration of Cr(VI).	
34	Fig. S29. Percentage photo-reduction of Cr(VI) catalysed by PCN-222	S-24
	and H_2TCPP ligand.	
35	Fig. S30. Fluorescence spectra of H_2 TCPP ligand and PCN-222 MOF.	S-25
36	Fig. S31. Time-resolved fluorescence spectra for H ₂ TCPP ligand and	S-25
	PCN-222 MOF recorded with excitation wavelength of 440 nm in	
	water.	
37	Table S3. Decay parameters of samples recorded in water with	S-26
	excitation wavelength of 440 nm.	
38	Fig. S32. Optimized structure of H_2TCPP , H_3TCPP^+ , and H_4TCPP^{+2} .	S-26
	Here, white: hydrogen, grey: carbon, blue: nitrogen, red: oxygen.	
39	Fig. S33. Optimized structures of porphyrin metal complexes.	S-27
40	Fig. S34. Bandgaps of optimized FeCl-TCPP and MnCl-TCPP	S-27
	structures.	

41	Fig. S35. Solid state UV-vis absorption spectrum of as synthesized							
	PCN-222 and the isolated sample after soaking in dilute H_2SO_4 (pH 1),							
	(b) band gap plot for protonated PCN-222 after treated at pH 1.							
42	Fig. S36. PXRD patterns of PCN-222,(a) as-synthesized sample (b)							
	recycled sample after catalysis.							
43	Fig. S37. UV-Vis spectra of (a) as synthesized PCN-222 and (b)	S-29						
	recycled sample after catalysis.							
44	Fig. S38. FT-IR spectra of (a) as synthesized PCN-222 and (b)	S-29						
	recycled sample after catalysis.							

Experimental section

Materials

All reagents and solvents were purchased from commercial sources and used without further purification. ZrCl₄.8H₂O (98%), and pyrrole (98%) were obtained from Sigma-Aldrich Chemicals. Propionic acid (99%) was received from TCI Chemicals. H₂TCPP ligand was prepared by following the previously reported literature procedure with modification and characterized.¹ PCN-222 was synthesized following the reported procedure² and the phase purity of the compound was identified by PXRD analysis, UV-Vis and FTIR spectroscopy.

Physical measurements

Powder X-ray powder diffraction (PXRD) patterns were collected on a PANalytical X'PERT PRO diffractometer using Cu-K_{α} radiation (λ =1.542 Å; 40 kV, 20 mA). pH of the solutions were measured using Mettler Toledo pH meter. UV-vis spectra were recorded on Shimadzu UV-2600 240 V spectrophotometer. Fluorescence spectra of the samples dispersed in water were recorded on a Perkin Elmer LS55 fluorescence spectrophotometer at room temperature. Time resolved fluorescence measurements of all samples dispersed in water were recorded on Flurocube; Horiba Jobin-Yvin, NJ at room temperature.

Photoelectrochemical studies

The photoelectrochemical measurements were performed in a three-electrode photoelectrochemical (PEC) cell, a scanning potentiostat (Metrohom, Autolab). For this 2.5 mg of the photocatalyst was dispersed in 500 μ L ethanol and 20 μ L of Nafion (0.25%) solution was added for preparing the working electrode. The mixture was sonicated for 10 minutes and drop-casted on to an indium doped tin oxide (ITO) glass substrate with 2 X 3.5 cm² area. A calomel electrode and a platinum wire were used as reference and counter electrodes, respectively. In addition to this, 0.1 M Na₂SO₄ solution was prepared and the pH of solution was adjusted to 1 by adding few drops of H₂SO₄ used as electrolyte. A visible light emitting CFL bulb (45 W) was used as the incident light source and placed at 10 cm distance from the electrochemical cell. The photoelectrochemical (PEC) studies of the photocatalysts were performed by measuring photocurrent density in dark and under visible light irradiation. All the samples were quite stable in 0.1 M Na₂SO₄ electrolytic solution at pH 1.

Fig. S1 Powder X-ray diffraction pattern of as-synthesized PCN-222 and PCN-222(M) (Zn^{II}, Cu^{II}, Ni^{II}, Co^{II}, Fe^{III}Cl, and Mn^{III}Cl).

Fig. S2 (a) Solid state UV-Vis absorption spectrum and (b) band gap plot for PCN-222.

Fig. S3 UV-Vis spectra of PCN-222 and PCN-222(M) (Zn^{II}, Cu^{II}, Ni^{II}, Co^{II}, and Mn^{III}Cl) MOFs.

Fig. S4 Bandgap plots for PCN-222 and PCN-222(M) (Zn^{II}, Cu^{II}, Ni^{II}, Co^{II} and Mn^{III}Cl) MOFs.

Fig. S5 Calibration curve of Cr(VI)-diphenylcarbazide solution.

Fig. S6 Absorption spectra for photocatalytic reduction of Cr(VI) to Cr(III) catalysed by PCN-222 in the absence of methanol.

Fig. S7 Absorption spectra for photocatalytic reduction of Cr(VI) to Cr(III) catalysed by PCN-222 in the presence of methanol.

Fig. S8 Absorption spectra for photocatalytic reduction of Cr(VI) to Cr(III) catalysed by PCN-222 in the absence of acid.

Fig. S9 Absorption spectra for photocatalytic reduction of Cr(VI) to Cr(III) catalysed by PCN-222 in the absence of light.

Fig. S10 Absorption spectra for photocatalytic reduction of Cr(VI) to Cr(III) in the absence of PCN-222 catalyst.

Table S1. Comparison of cataly	tic efficiency	for reduction	of Cr(VI) to	Cr(III) reported	l for
various MOFs ³					

S.No.	Catalysts	Catalyst	Cr(VI)	Efficiency	pН	<i>k</i> (min ⁻¹)	Referen
		amount	concentr				ces
		(mg)	ation				
		(8/	(ppm)				
1	Pd@UiO-66(NH ₂)	20	10	99 % in 90 min	2	-	3a
2	UiO-66(NH ₂)	20	10	97 % in 80 min	2	-	3b
3	g-C ₃ N ₄ /MIL-	20	10	100 % in 180	2	0.0191	3c
	53(Fe)			min			
4	NNU-36	15	10	95.3% in 60	2.17	0.0471	3d
				min			
5	NH ₂ -Fe(III)MIL-	20	8	100 % in 45	2	-	3e
	88B			min			
6	[Cd(4Hptz) ₂ ·(H ₂ O	7	10	100 % in 50	3	0.0481	3f
	$)_2Cl_2]_n$			min			
7	$[Cu(btx)_2(ClO_4)_2]_n$	7	10	92.17 % in 70	3	0.0295	3f
				min			
8	[Cu(btx)(ClO ₄)] _n	7	10	82.92 % in 60	3	0.0217	3f
				min			
9	[Cu ₂ I ₂ (BPEA)](D	15	10	95 % in 10 min	2.23	-	3g
	MF) ₄						
10	PCN-222	5	10	93 % in 30 min	2	0.0941	Present
							work
11	PCN-222	5	20	97.75 % in 60	2	0.0598	Present
				min			work
12	PCN-222	5	20	100% in 25	1	0.1289	Present
				min			work

Fig. S11 Absorption spectra for photocatalytic reduction of Cr(VI) to Cr(III) catalysed by PCN-222(Mn).

Fig. S12 Absorption spectra for photocatalytic reduction of Cr(VI) to Cr(III) catalysed by PCN-222(Fe).

Fig. S13 Absorption spectra for photocatalytic reduction of Cr(VI) to Cr(III) catalysed by PCN-222(Ni).

Fig. S14 Absorption spectra for photocatalytic reduction of Cr(VI) to Cr(III) catalysed by PCN-222(Co).

Fig. S15 Absorption spectra for photocatalytic reduction of Cr(VI) to Cr(III) catalysed by PCN-222(Cu).

Fig. S16 Absorption spectra for photocatalytic reduction of Cr(VI) to Cr(III) catalysed by PCN-222(Zn).

Fig. S17 (a) Histogram showing photocatalytic reduction of Cr(VI) catalysed by PCN-222 and PCN-222(M) (M = Zn^{II}, Cu^{II}, Ni^{II}, Co^{II}, Fe^{III}Cl, and Mn^{III}Cl) within 30 min at pH 1, (b) Time-dependent plot for photocatalytic reduction of Cr(VI).

Fig. S18 Kinetics of photocatalytic reduction of Cr(VI) catalysed by PCN-222 and PCN-222(M) ($M = Zn^{II}$, Cu^{II}, Ni^{II}, Co^{II}, Fe^{III}Cl, and Mn^{III}Cl).

Fig. S19 (a) Histograms showing % reduction of Cr(VI) catalysed by PCN-222 and PCN-222(M) (M = Zn^{II}, Cu^{II}, Ni^{II}, Co^{II}, Fe^{III}Cl, and Mn^{III}Cl) at pH 2, (b) time-dependent plot for photocatalytic reduction of Cr(VI).

Fig. S20 Kinetic plots for photo-reduction of Cr(VI) catalysed by PCN-MOFs at pH 2.

Fig. S21 (a) Histograms showing % reduction of Cr(VI) catalysed by PCN-222 and PCN-222(M) (M = Zn^{II}, Cu^{II}, Ni^{II}, Co^{II}, Fe^{III}Cl, and Mn^{III}Cl) at pH 3, (b) time-dependent plot for photocatalytic reduction of Cr(VI).

Fig. S22 Kinetic plots for photo-reduction of Cr(VI) catalysed by PCN-MOFs at pH 3.

Fig. S23 (a) Histograms showing % reduction of Cr(VI) catalysed by PCN-222 and PCN-222(M) ($M = Zn^{II}$, Cu^{II} , Ni^{II} , Co^{II} , $Fe^{III}Cl$, and $Mn^{III}Cl$) at pH 4, (b) time-dependent plot for photocatalytic reduction of Cr(VI) catalysed by PCN-MOFs at pH 4.

Fig. S24 Kinetic plots for photoreduction of Cr(VI) catalysed by PCN-MOFs at pH 4.

S. No.	MOF	рН	Time (min)	% Reduction	k (min ⁻¹)
1.	PCN-222	1	30	100	0.1289
2.	PCN-222(Zn)	1	30	76	0.0442
3.	PCN-222(Cu)	1	30	66	0.0335
4.	PCN-222(Ni)	1	30	64	0.0288
5.	PCN-222(Co)	1	30	56	0.0237
6.	PCN-222(Fe)	1	30	42	0.0151
7.	PCN-222(Mn)	1	30	31	0.0079
8.	PCN-222	2	60	98	0.0598
9.	PCN-222(Zn)	2	60	81	0.0274
10.	PCN-222(Cu)	2	60	71	0.0205
11.	PCN-222(Ni)	2	60	63	0.0167
12.	PCN-222(Co)	2	60	55	0.0123
13.	PCN-222(Fe)	2	60	40.	0.0080
14.	PCN-222(Mn)	2	60	29	0.0054
15.	PCN-222	3	120	91	0.0206
16.	PCN-222(Zn)	3	120	84	0.0159
17.	PCN-222(Cu)	3	120	75	0.0117
18.	PCN-222(Ni)	3	120	68	0.0096
19.	PCN-222(Co)	3	120	61	0.0079
20.	PCN-222(Fe)	3	120	42	0.0045
21.	PCN-222(Mn)	3	120	31	0.0033
22.	PCN-222	4	180	86	0.0108
23.	PCN-222(Zn)	4	180	82	0.0093
24.	PCN-222(Cu)	4	180	76	0.0081
25.	PCN-222(Ni)	4	180	68	0.0064
26.	PCN-222(Co)	4	180	63	0.0056
27.	PCN-222(Fe)	4	180	37	0.0025
28.	PCN-222(Mn)	4	180	29	0.0018

Table S2. Comparison of catalytic reduction of Cr(VI) to Cr(III) using PCN-222 frameworks.

Fig. S25 Absorption spectra for photocatalytic reduction of Cr(VI) to Cr(III) catalysed by PCN-222 in tap water.

Fig. S26 Absorption spectra for photocatalytic reduction of Cr(VI) to Cr(III) catalysed by PCN-222 in river water.

Fig. S27 (a) Photocatalytic reduction of Cr(VI) to Cr(III) carried out in deionized, tap, and river water, (b) the percentage photocatalytic reduction of Cr(VI) within 25 min.

Fig. S28 (a) Concentration-dependent adsorption of Cr(VI) by PCN-222 and PCN-222(M) (M = Zn^{II} , Cu^{II} , Ni^{II} , Co^{II} , $Fe^{III}Cl$, and $Mn^{III}Cl$) carried out under dark conditions, (b) time-dependent adsorption of Cr(VI) carried out with 40 ppm concentration of Cr(VI).

Fig. S29 Percentage photo-reduction of Cr(VI) catalysed by PCN-222 and H₂TCPP ligand

Fig. S30 Fluorescence spectra of H₂TCPP ligand and PCN-222 MOF.

Fig. S31 Time-resolved fluorescence spectra for H₂TCPPligand and PCN-222 MOF recorded with excitation wavelength of 440 nm in water.

Table S3. Decay parameters of samples recorded in water with excitation wavelength of 440 nm.

S. No.	Sample	τ_1 (ns)	τ_2 (ns)	τ (ns)
1	PCN-222	0.067 (92.35 %)	0.961 (7.65 %)	0.14
2	PCN-222(Zn)	0.062 (97.2 %)	1.68 (2.8 %)	0.11
3.	PCN-222(Cu)	0.057 (96.28 %)	0.82 (3.72 %)	0.09

Fig. S32 Optimized structure of H_2TCPP , H_3TCPP^+ , and H_4TCPP^{+2} . Here, white: hydrogen, grey: carbon, blue: nitrogen, red: oxygen.

Fig. S33 Optimized structures of porphyrin metal complexes.

Fig. S34 Bandgaps of optimized FeCl-TCPP and MnCl-TCPP structures.

Fig. S35 (a) Solid state UV-Vis absorption spectra of as synthesized PCN-222 and the isolated sample after soaking in dilute $H_2SO_4(pH 1)$, (b) band gap plot for protonated PCN-222 after treated at pH 1.

Fig. S36 PXRD patterns of PCN-222, (a) as-synthesized sample (b) recycled sample after catalysis.

Fig. S37 UV-Vis Spectra of (a) as synthesized PCN-222 and (b) recycled sample after catalysis.

Fig. S38 FT-IR Spectra of (a) as synthesized PCN-222 and (b) recycled sample after catalysis.

Coordinates of optimized structure of H₂TCPP:

\sim					-		
0	-6.64595100	7.34237500	1.07135500	С	-3.67209600	4.32686000	1.17711500
Ν	-2.03788400	0.04116200	-0.03552300	Н	-3.09578500	4.12456200	2.07354200
0	7.41623800	6.57635400	1.01942600	С	-6.41212200	6.66445300	0.09942500
С	4.87948500	5.11557100	-1.15247700	0	-7.16728800	-6.81913000	-1.06028200
Η	5.08365400	5.68766200	-2.04890100	0	6.89273600	7.00855400	-1.11933500
С	2.51326900	2.37550500	0.00829200	С	6.73044300	6.34638700	0.05211300
С	5.37830100	4.59030200	1.15235400	0	6.34830500	-7.60253500	-0.93932500
Η	5.97240600	4.77396200	2.03990500	С	6.40640800	-6.71192600	-0.13709400
0	-7.07905800	6.82712200	-1.06924600	С	-1.06392000	2.90724700	0.01364600
Ν	2.04173100	-0.05113700	0.03963200	С	-0.58631900	4.25852900	0.01382000
Ν	-0.04496600	-2.11089200	-0.00733900	Η	-1.21769600	5.13259800	0.00859000
Η	-0.02219900	-1.09938800	-0.00077900	С	0.77999300	4.22774000	0.02109500
Ν	0.04866000	2.10088700	0.00937800	Η	1.44961800	5.07281100	0.03378300
Η	0.02577800	1.08943700	0.00468300	С	1.19648200	2.85635500	0.01083100
0	7.41916300	-6.67544000	0.77033000	С	2.88854200	1.01774100	0.00536700
С	5.64033300	5.33740600	-0.00017400	С	2.84065400	-1.15510000	-0.00724600
С	1.06790200	-2.91712800	-0.01823000	С	2.40477900	-2.49500000	-0.01841200
0	-7.26307500	-6.78040300	1.15722700	С	-1.19307900	-2.86625600	-0.00725900
С	-6.74727900	-6.36620000	-0.03139400	С	-0.77627700	-4.23755800	-0.02435800
С	-5.65460200	-5.34012600	0.03410600	Η	-1.44446700	-5.08370900	-0.04156500
С	-5.39219500	-4.59300100	-1.11868200	С	0.59005100	-4.26842100	-0.02175100
Η	-5.98820800	-4.77993900	-2.00411000	H	1.21987000	-5.14365700	-0.02275500
С	-4.38661700	-3.63557600	-1.12502500	С	3.66205000	-4.34650000	-1.18514400
Н	-4.19802000	-3.05704400	-2.02286000	Н	3.07544500	-4.15105500	-2.07635800
С	-3.59764800	-3.41409500	0.01232900	С	4.21415200	-3.83925400	1.10208000
С	-3.84516300	-4.18267900	1.15541300	Н	4.04155000	-3.26732000	2.00722200
H	-3.23768400	-4.03229300	2.04124500	С	5.18206200	-4.83861500	1.08944000
С	-4.86266000	-5.131/3600	1.16869300	Н	5.72443000	-5.04393300	2.00841000
H	-4.99/92500	-5./306/600	2.06515700	C	5.40290100	-5.59915400	-0.06435500
С	-2.50948100	-2.38454600	0.00083700	С	4.24/3/100	-0.//389900	-0.08325800
C	-2.88524500	-1.02642100	0.001/6100	Н	5.08569000	-1.44968100	-0.155/2800
C	-4.2/3/4100	-0.58390900	0.07969200	C II	4.2//0/300	0.5/6/1500	-0.0/4//800
H	-5.14152300	-1.22239500	0.142/0500	Н	5.14330700	L.21/34400	-0.13/20900
U	-4.24340300	1 44400000	0.00107700	U	4.62063900	-3.33116300	-1.1966/600
п	-3.06091300	1 14626000	0.14693600	п	4./0142000	-5.95659500	-2.08089000
C	-2.40114600	2 49602600	0.00399800	c	1 27100000	-3.37327900	1 15242200
C	-2.40114600	2.40002000	0.01246900	U	4.3/109600	2 06029100	2 05047700
C	-4.20254200	2 92092100	-1 12157500	Г	2 96907600	1 16024100	_1 14500200
U U	-4.20234300	3 25097400	-2 02159200	U U	3 28616800	3 98607300	-2 04405200
C	-5 16794400	1 83156600	-1 11906500	C	3 60099300	3 40620700	0 00375900
н	-5 74714700	5 03303900	-2 01151500	н	7 43100600	-5 83196600	1 23937600
C	-5 39223800	5 58502200	0 03771000	н	7 61861700	7 63617100	-0 98627700
c	-4 63830500	5 32451900	1 18603200	н	-7 71457200	7 54486800	-0 92974300
н	-4 82528900	5 91126600	2 07777800	н	-6 95025800	-6 22453800	1 88160200
	1.02020900	0.91120000	2.011110000		0.90020000	0.22100000	1.00100200
С	oordinates of	ontimized stri	icture of H ₂ T(∼pp	•+•		
\sim	6 47912700	7 53753200	-0 83973000		• 3 44991300	4 59606600	-0 92517200
N	2.10677600	0.02345200	0.10244200	н	2.66417300	4.61497300	-1.67235900
0	-6 70569500	7 32373200	-0 83250100	Ċ	6 48292800	6 63880200	-0 03697200
c	-5.53619900	4.39102100	0.98433600	0	7.28752000	-6.67253400	1.11458000
Н	-6.27876000	4.37773300	1.77203500	õ	-7.51163300	6.31951500	1.00997800
С	-2.48232100	2.41404200	-0.09316500	C	-6.63498600	6.44632900	-0.00901400
Ĉ	-4.61916400	5.41009500	-1.00626100	õ	-7.05075500	-6.81725600	1.25307400
H	-4.67341900	6 18439100	-1 76233500	Ĉ	-6.54427900	-6 55226600	0 19987900

С	-2.48232100	2.41404200	-0.09316500	С	-6.63498600	6.44632900	-0.00901400
С	-4.61916400	5.41009500	-1.00626100	0	-7.05075500	-6.81725600	1.25307400
Н	-4.67341900	6.18439100	-1.76233500	С	-6.54427900	-6.55226600	0.19987900
0	7.42423800	6.50729400	0.92115900	С	1.09481600	2.90166400	0.15802400
Ν	-2.00390600	-0.01900800	-0.16223500	С	0.61989100	4.20754500	0.49991000
Ν	0.01829000	-2.12202700	-0.04799100	Η	1.25494700	5.03583300	0.77021500
Η	-0.04961000	-1.17849500	-0.39982800	С	-0.74802600	4.19487500	0.45922500
Ν	-0.02820700	2.12466300	-0.04475100	Η	-1.41335400	5.01195300	0.68785200
Η	-0.07573800	1.17904200	-0.39412000	С	-1.17077500	2.87906500	0.09472800
0	-6.90489500	-7.21232300	-0.92759400	С	-2.83885500	1.05954400	-0.27380800
С	-5.58329000	5.38727000	0.00488900	С	-2.81520400	-1.11508100	-0.27008300
С	-1.10859800	-2.89950300	0.09683800	С	-2.42853800	-2.46122900	-0.08795800
0	6.93912100	-7.18556500	-1.01747300	С	1.15803200	-2.87522100	0.15139300
С	6.67725600	-6.47138600	0.10322700	С	0.71096600	-4.19023200	0.49746800
С	5.58754800	-5.43499400	0.01094900	Η	1.36312100	-5.00404200	0.77140400
С	5.58397200	-4.41794600	0.97080400	С	-0.65701700	-4.20576000	0.46207600
Η	6.36307200	-4.41348300	1.72359100	Η	-1.30394600	-5.03525700	0.69911600
С	4.59464400	-3.44521200	0.96256800	С	-4.43829500	-3.52263000	0.99059000

Η	4.60329800	-2.66463600	1.71545600	Н	-4.39561700	-2.76486800	1.76525400
С	3.56108300	-3.48349200	0.01357600	С	-3.54744000	-4.51284900	-1.02040000
С	3.55346400	-4.51813300	-0.93116300	Н	-2.82045000	-4.52235400	-1.82528000
Η	2.76428800	-4.56429100	-1.67340100	С	-4.53886300	-5.48898700	-0.97633000
С	4.55940600	-5.47925700	-0.93596200	Η	-4.53596200	-6.26478000	-1.73611800
Η	4.50465000	-6.28088500	-1.66633600	С	-5.48247500	-5.49437300	0.05533500
С	2.49065700	-2.44476700	0.01995300	С	-4.19331700	-0.71796100	-0.53730400
С	2.89274000	-1.10747000	-0.12836000	Η	-5.02220500	-1.38666700	-0.70801900
С	4.15514300	-0.63823300	-0.58410200	С	-4.20780600	0.63146300	-0.54142500
H	4.95516600	-1.27535600	-0.92645000	H	-5.04988600	1.28199400	-0.71712500
C	4.14030000	0./3391/00	-0.58041000	C	-5.40944400	-4.51232600	1.04838700
Н	4.92541900	1.39094000	-0.91966100	Н	-0.12155100	-4.54600500	-0.04423000
C	2.00002300	2 50062900	-0.12213400	C	-3.61461200	-3.310988000	-1.03618900
C	2.43747300	2.50002900	0.03044900	ц	-2 87690000	4.45108700	-1 83117900
c	4 52335300	3 54093500	0.96573400	C	-4 53719500	3 42474100	0 94637900
Н	4.55237400	2.75802200	1.71574200	Н	-4.50009100	2.65977700	1.71423600
С	5.50001700	4.53018500	0.96624000	C	-3.56382700	3.44360200	-0.06233800
Н	6.29174900	4.51582100	1.70445100	Η	-6.55098200	-6.78658600	-1.71840500
С	5.45901300	5.55277100	0.01433200	Н	-8.15619500	7.03916800	0.93020000
С	4.43112700	5.57789200	-0.93236400	Н	8.04550000	7.24512700	0.82368400
Η	4.41973600	6.37235600	-1.66907700	Н	6.49977900	-6.81272800	-1.79187300
				Η	1.36750800	0.01344000	0.79269400
C	oordinates of	optimized stru	icture of H₄T(CPP	⁺² :		
0	5.87633500	-7.95832100	1.07622800	Н	2.40196400	-4.65552400	1.86999300
Ν	2.08009800	-0.23274000	-0.28570400	С	5.87498900	-7.17899100	0.15966500
0	-8.30114500	-5.52839100	0.82983500	0	7.91827200	5.90610800	-1.14061700
С	-5.25532200	-4.84914100	-1.04631300	0	-7.49062600	-6.46768800	-1.05028100
Η	-5.39338800	-5.55550600	-1.85502300	С	-7.45063600	-5.60793000	-0.01727300
С	-2.76770200	-2.21127500	0.07033800	0	-5.45648100	8.21519600	-0.81171800
С	-6.05554200	-3.82645100	0.99483400	С	-5.77040800	7.27791800	-0.13651700
H	-6.81089400	-3.77108900	1.76973500	С	0.77006600	-3.04724000	-0.08146000
0	6./1/03100	-7.24183000	-0.886/4/00	С	0.1/2/0600	-4.34636200	-0.02420400
N	-2.09356500	0.21166500	0.31549800	Н	0.72015700	-5.2/40//00	-0.05/3/400
N U	0.26504200	2.12224400	0.05554/00	U U	-1.18243600	-4.19852000	0.0942/400
п	-0.27673100	-2 14460800	-0.02494700	г	-1.48884500	-2 80288000	0.19842700
Н	-0 19025800	-1 15072400	-0 13408900	C	-3 01546000	-0 82329500	0.000000000
0	-6.90628400	7.28636500	0.59135700	C	-2.73351900	1,44610500	0.07006500
C	-6.21966200	-4.75223600	-0.03866600	Ĉ	-2.16005000	2.73322500	0.11036800
С	-0.78256400	3.02444100	0.10315800	С	1.47720000	2.78040500	-0.04395600
0	7.84573800	6.23454100	1.05518200	С	1.16922100	4.17612200	-0.08319300
С	7.39837800	5.67417300	-0.08783500	Н	1.89759900	4.96240700	-0.19800400
С	6.20002300	4.75787900	0.01437700	С	-0.18552900	4.32405400	0.03297400
С	6.01151200	3.83818200	-1.02255100	Н	-0.73296700	5.25223000	0.05417100
Η	6.73477200	3.81051500	-1.82869800	С	-3.11342500	4.75884100	-1.05159200
С	4.91173400	2.99361800	-1.02333700	Η	-2.43565500	4.59270900	-1.88220200
Η	4.77874200	2.29002300	-1.83818200	С	-4.02183600	4.09498800	1.08881600
С	3.94535800	3.08189600	-0.00670800	Н	-4.01946800	3.44197300	1.95506900
C	4.12545200	4.01801000	1.02181300	C	-4.90169400	5.1/32/100	1.04541100
п	5 240129900	4.09100200	1.02549000	п	-3.33374700	5.54552600 6 04519700	-0.04668000
ц	5 34745200	5 56689300	1 83548800	c	-4.03904000	1 15356700	-0.396/8300
C	2 75470100	2 18922500	-0 04405300	н	-4 73627000	1 89221500	-0 75768100
С	3.00290200	0.80107400	-0.01222000	C	-4.20690900	-0.21185500	-0.41556400
C	4.19494500	0.18939900	0.44100500	H	-5.06237800	-0.74969700	-0.79321100
H	5.05273700	0.72615600	0.81483800	С	-3.99382100	5.82979400	-1.09121800
С	4.02525400	-1.17609800	0.42264600	Н	-3.99132500	6.52064300	-1.92584100
Н	4.72413600	-1.91556800	0.78082500	С	-3.11213200	3.88129100	0.04512600
С	2.72028500	-1.46786900	-0.04317200	С	-4.94100700	-3.00034700	1.02183800
С	2.14852200	-2.75611900	-0.08767400	Н	-4.81519200	-2.29645300	1.83752600
С	3.10448800	-3.89885100	-0.03127300	С	-4.12925800	-4.03487900	-1.01270100
С	4.04372700	-4.07204300	-1.05926600	Н	-3.39913000	-4.10030600	-1.81217600
Н	4.05425200	-3.39254300	-1.90488400	С	-3.95810300	-3.10153500	0.02249700
С	4.94186100	-5.13322300	-1.02124000	Η	-7.12393600	6.41675900	0.94977900
H	5.65269300	-5.27514600	-1.82531700	H	-8.30608300	-6.98875100	-0.98068100
C	4.92/31000	-6.02186400	0.05669800	H	1.29858700	-8.00850200	-U./631/900
с ц	4.00010/0U	-J.044U32UU _6 53//0000	1 03013000 1 03013000	н u	1 51064200	J.033UZ3UU _0 1//0/200	1 1042090UU
л С	3 NAKKANN	-0.JJ442200 -4 79651900	1 0/00/700	п u	-1 53/70/00	-0.14404300 0 12522600	-1.12002000 1 15701000
\sim	5.05000000		T.0-70-700	11	T.021/0200	0.12022000	T . T O I O T C O O

Coordinates of optimized structure of CoTCPP:

0	6.30027800	-7.75565300	-0.28956300	H	3.10019400	-4.47301300	1.48544000
N	-7 61472300	-0.16/69100	-0.0151/000	0	5.95552900	-6.95246300	-1.16380400
C	-5.28225000	-4.87900900	-0.23735400	0	-7.39216700	-6.60411000	0.21612300
Н	-5.64555000	-5.51423000	-1.03074500	C	-7.02476600	-5.83621300	1.30566800
С	-2.60761600	-2.22517600	0.33482900	0	-5.63014300	7.80431400	-2.33645300
С	-5.43052200	-4.10262600	2.05479000	С	-5.82404100	7.01673500	-1.41643900
Н	-5.91004800	-4.15552700	3.02180500	С	0.86104400	-2.91389100	-0.16695300
0	6.45538100	-7.03342000	-2.45031000	С	0.32594400	-4.25398300	-0.09766500
Ν	-1.96863500	0.15228900	0.01402800	Η	0.90031800	-5.15424100	-0.21797900
Ν	0.15849900	1.95622400	-0.00327600	С	-1.00314700	-4.14472700	0.16465600
N	-0.16024100	-1.98053600	0.01257700	Н	-1./131/500	-4.93928300	0.3034/400
C	-6.94113300	-4 02102500	-0.60809700	C	-1.31/69900	-2.73528600	0.20585300
C	-0.85933200	2 88751600	-0 20449400	C	-2.72434500	1 30474100	-0 20494900
0	7.40777900	6.13421900	2.55264100	C	-2.21439200	2.59361800	-0.34695000
C	6.95318400	5.94148700	1.25363900	C	1.31324100	2.71141500	0.19809600
С	5.83767600	4.97489200	1.06418200	С	1.00262400	4.12064300	0.13241300
С	5.64426300	4.43335500	-0.21515000	Н	1.71638100	4.91548600	0.25245600
Η	6.31205600	4.73286700	-1.01004900	С	-0.32649000	4.22846100	-0.13226000
С	4.60793400	3.53435600	-0.45135500	Н	-0.90219100	5.12822800	-0.25196700
Η	4.46905600	3.11999300	-1.44028500	С	-3.19715100	4.35217000	-1.86156500
С	3.72619900	3.16660000	0.57928700	Η	-2.54072800	4.00112900	-2.64562700
С	3.90649300	3.73204200	1.85095900	С	-4.01645600	4.19907600	0.40490200
н	3.22395500	3.4/248400	2.04828800	н	-3.9/966000	3./4/51/00 5.25651000	1.38654200
ц	4.93023300 5.03663100	4.02430000 5.06760700	3 07765200	ц	-4.8914/900	5 62476100	0.10050500
С	2.60377800	2.20369900	0.33159800	C	-4.93309800	5.86689300	-1.10285000
C	2.90006400	0.85030700	0.18597800	C	-4.13262800	0.98307200	-0.19047000
С	4.23924600	0.30949400	0.15291500	Н	-4.92781900	1.68485600	-0.36381000
Н	5.13864700	0.87851800	0.30255400	С	-4.24063200	-0.34500600	0.07883300
С	4.13072200	-1.02075000	-0.10504400	Η	-5.13887400	-0.92925600	0.16321700
Η	4.92327900	-1.74076300	-0.19906800	С	-4.06518300	5.41249300	-2.10640900
С	2.72159900	-1.32660600	-0.19307100	Н	-4.08594900	5.90245200	-3.06918700
С	2.21496200	-2.6191/500	-0.312/0400	C	-3.1623/100	3.72583600	-0.60390600
C	3 76138400	-3.74319400	-0.33667600	U U	-4.36616300	-2.59670500	2 626192200
Н	3.49642100	-3.26744200	-2.61304000	C	-4.21760400	-4.00742300	-0.45799200
С	4.66409500	-4.97214400	-2.02667400	Н	-3.75210800	-3.96250800	-1.43289300
Н	5.10332000	-5.11808800	-3.00170500	С	-3.74504900	-3.17376600	0.56949500
С	5.00588200	-5.84008400	-0.97928100	Η	-7.11173500	6.43809900	-0.01368800
С	4.43442600	-5.65475100	0.28856300	Н	-8.14103800	-7.18279100	0.45451000
H	4.71071100	-6.32771100	1.08773700	H	7.07586000	-7.78357000	-2.51936000
С	3.53221400	-4.61/15400	0.50481100	H Q-	7.05291800	5.48836000	3.18856000
				CO	-0.000/3600	-0.01048900	0.00194000
С	oordinatos of	ontimized stru	acture of CuT	СЪБ).		
	-6 29143900	7 6244400	1 07571600		•	6 96434700	0 09118000
N	-2.00929700	0.13442500	-0.02379600	0	-7.42541000	-6.51713400	-1.04255500
0	7.64692700	6.27302100	1.05481500	0	7.21277900	6.65766900	-1.11277100
С	5.11949400	4.85303500	-1.15498100	С	6.98288400	6.04199300	0.07262700
Η	5.37705800	5.38679200	-2.06124700	0	5.98181900	-7.86571700	-0.98788300
С	2.59846600	2.25808600	0.00942800	С	6.05069700	-7.00993400	-0.14941400
С	5.51882400	4.38400100	1.18115000	С	-0.89820600	2.90754000	0.00774400
H	6.09110100	4.57133600	2.08218700	С	-0.38409300	4.25503600	0.00607800
0 M	-6.6/840600	7.19480200	-1.09237000	Н	-0.98420400	5.15141900	-0.00019800
N	-0 13765200	-2 01537000	-0 00986900	н	1 68503400	4.10101400	0.01309000
N	0.14024300	2.00646300	0.00427100	C	1.29266200	2.75644400	0.00534700
0	7.02606800	-7.05892500	0.79756300	Ĉ	2.91234300	0.89597300	0.00854400
С	5.85141200	5.07998700	0.01498000	С	2.76157200	-1.29507200	-0.00739700
С	0.90111600	-2.91616700	-0.02600400	С	2.26299900	-2.60091400	-0.02291100
0	-7.55039800	-6.42829400	1.17202600	С	-1.29015600	-2.76530300	-0.00750400
C ~	-6.99980000	-6.06222500	-0.01679900	С	-0.96529200	-4.17051600	-0.02897600
C	-5.86464500	-5.08309300	0.04440600	H	-1.68063300	-4.9/786300	-0.04557400
с Н	-5.55123600	-4.3/333200 -4.55765100	-1.12032200	Ч	0.30/03200	-4.20303900 -5 16110900	-0.03209500 -0.03848700
C	-4.50497300	-3.46237700	-1.13075700	C	3.46993100	-4.47153200	-1.20884100
Η	-4.27607000	-2.91486100	-2.03872100	H	2.92579400	-4.21674600	-2.11193000
С	-3.72663100	-3.24756200	0.01489200	С	3.95659500	-4.07535000	1.11455700

С	-4.02641200	-3.97702900	1.17080500	Н	3.77706500	-3.52826100	2.03370700
Η	-3.42557800	-3.83383300	2.06232200	С	4.87352100	-5.12191100	1.10058100
C	-5 08321000	-4 88197000	1 18761600	ц	5 36845700	-5 38746500	2 03085000
	5.00521000	1.00197000	1.10/01000		5.50045700	5.56710500	2.03003000
Н	-5.25/81600	-5.45441100	2.09456800	C	5.10108200	-5.85099400	-0.0/199300
С	-2.59583200	-2.26614500	0.00134300	С	4.16614500	-0.96965700	-0.04903400
С	-2.91013700	-0.90365000	0.00048900	Η	4.97202500	-1.68528700	-0.09704000
C	-1 25646900	-0 38877100	0 05167800	C	1 2591/300	0 38273400	-0 03845000
	- 15070000	0.300//100	0.0010/000			0.302/3400	0.03043000
Н	-5.152/2000	-0.98/48500	0.09634900	Н	5.15421300	0.98383000	-0.0/4/0400
С	-4.16282100	0.96353900	0.05012600	С	4.37640800	-5.52351800	-1.22232200
Н	-4,96752800	1,68074600	0.09339200	Н	4.53973800	-6.10585400	-2.12144800
C	-2 75929400	1 207/1700	0 00015100	C	2 24600200	-2 72002000	_0_04072500
0	-2.75050400	1.20/44/00	0.00015100	C	3.24000300	-3.72995000	-0.04072500
С	-2.26033700	2.59331300	0.00490600	С	4.47026300	3.47334000	1.17711600
С	-3.24472300	3.72240200	0.01414000	Η	4.21378300	2.93964700	2.08598600
С	-3.95251500	4,06038400	-1.14601300	С	4.06856100	3,94231100	-1.15273300
U	-2 77742500	2 40050000	-2 05792700	U U	2 50500200	2 76571700	-2 06221600
п	-3.77742300	5.49950800	-2.03783700	п	3.30399200	3.70371700	-2.00321000
С	-4.86/22100	5.10/81000	-1.14346500	С	3./2942200	3.24038600	0.01066100
Η	-5.40550100	5.36447100	-2.04730800	Η	7.05915800	-6.23560300	1.30017200
С	-5.09261000	5.83709700	0.02839200	н	7.96104400	7.25723600	-0.97458300
ĉ	-4 20002100	5 50554600	1 101/0/00	11	-7 20102200	7 92996900	-0.05001400
C	-4.39093100	5.50554800	1.19149400	п	-7.20103300	7.93990900	-0.95081400
Η	-4.57698900	6.07583200	2.09405200	Н	-7.22246200	-5.87258000	1.88977900
С	-3.47612400	4.46058300	1.18263800	Η	-2.93793200	4.20513400	2.08912700
				Cu	0 00125100	-0 00417700	-0 00203900
				ou	0.00120100	0.0011,700	0.00200000
C	oordinates of	ontimized stru	icture of FeT(СРР	:		
~	7 00715400	6 01156900		~		E 65500400	0 22050500
0	-7.90713400	6.01136800	0.78348300	C	-7.29577600	5.65500400	-0.22956500
Ν	-1.98581400	-0.26235000	-0.12100500	0	-5.62633700	-8.22547700	-0.65549600
0	6.24929300	7.61878100	1.34334500	0	5.84370700	7.96608600	-0.87704700
C	4 14108100	5 79549300	-1 03811000	C	5 67150500	7 27296400	0 30691300
11	1.1100100	6 30401100	1 01200000	0	7 42105400	6 54251600	1 26024200
п	4.34363900	6.39401100	-1.91309800	0	7.42103400	-6.34231600	-1.20024200
С	2.11260400	2.72639500	-0.05662800	С	7.28851100	-5.70543700	-0.38155500
С	4.49809800	5.34773200	1.31846000	С	-1.46211100	2.65360100	-0.19717300
н	4 97432500	5 61578200	2 25078100	C	-1 21496000	4 06933500	-0 16639100
~	7 66120000	6 10512700	1 40405000		1 0700000	1.00000000	0.10000000
0	-7.66129900	6.10513/00	-1.48485900	н	-1.9/962400	4.82449300	-0.16446600
Ν	1.98678500	0.25362000	-0.10657300	С	0.13366400	4.24590900	-0.10782400
Ν	0.25255600	-1.95703400	-0.23493300	Η	0.67250500	5.17367800	-0.04655400
N	-0 24933600	1 95092700	-0 19401100	C	0 73945200	2 94143800	-0 12543600
11	0.2400000	1.00002700	0.11477400	c a	0.75545200	2.94145000	0.12343000
0	8.25359800	-5.62183100	0.614//400	C	2.684/5200	1.45916/00	-0.06610000
С	4.75469600	6.12525800	0.17949400	С	2.97071800	-0.73150900	-0.16250600
С	1.46495800	-2.65904700	-0.24886700	С	2.73988800	-2.09933700	-0.22970300
\cap	-6 54567200	-7 42017900	1 24035400	C	-0 73764400	-2 94912200	-0 17651600
0	0.04007200	7.42017900	1.24033400	c a	0.1004000	2.94912200	0.17031000
C	-5.64443000	-7.33326900	0.18608900	C	-0.13042600	-4.25310800	-0.1/94/800
С	-4.75348300	-6.14141100	0.15408500	Η	-0.66686500	-5.18271900	-0.13349600
С	-4.14710500	-5.80438500	-1.06527600	С	1.21807400	-4.07514000	-0.22842300
н	-4 35662200	-6 41342400	-1 93273700	н	1 98192000	-4 83093400	-0 23257000
	2 207502200	4 70471700	1 15006400		1 20402200	2.655000	1 44536500
C	-3.29/50200	-4.70471700	-1.13086400	C	4.30492300	-3.66550600	-1.44556500
Н	-2.84767200	-4.44494300	-2.09912000	Н	3.74310800	-3.48498500	-2.35136400
С	-3.02096500	-3.92299900	-0.01696500	С	4.65482300	-3.27251900	0.91352500
С	-3.60926400	-4.27689400	1,20700400	н	4.35395400	-2.80423400	1.84046400
с U	-3 38286000	-3 69845600	2 00173600	C	5 75/21000	-4 12986000	0 80333300
п	-3.36260900	-3.09843000	2.091/3000	C	5.75421000	-4.129880000	0.09233200
С	-4.46428300	-5.37447800	1.29322800	Н	6.26990400	-4.33358800	1.82261400
Η	-4.86456800	-5.64403900	2.26264900	С	6.14374500	-4.75714300	-0.30133100
С	-2.11050900	-2.73448100	-0.10129200	С	4.28437400	-0.12875100	-0.16494600
Ĉ	-2 68420200	_1 46549100	_0 00/1000	ц Ц	5 21107700	-0 67015200	-0 22062700
C	-2.00420200	-1.40349100	-0.09410000	п	5.21107700	-0.07013200	-0.22002700
С	-4.10894000	-1.21921800	-0.12409500	С	4.10850300	1.21629500	-0.10319400
Η	-4.86407400	-1.98339700	-0.12954400	Η	4.86156000	1.98286100	-0.09942000
С	-4.28225700	0.12669900	-0.17203600	С	5.39902100	-4.52607900	-1.46719200
ц	-5 20650500	0 67330000	-0 21857100	U	5 60170100	-5 03050200	-2 37679300
	0.20030300	0.07550000	0.2105/100		2.0001/0100	5.05050200	2.57075500
C	-2.96/19900	0.72508700	-0.12829900	C	3.92062700	-3.02418000	-0.25606900
С	-2.73586000	2.09397900	-0.19355000	С	3.64250900	4.25221100	1.23997300
С	-3.91909900	3.01884700	-0.21404200	Н	3.44371300	3.65601800	2.11970100
С	-4.39188800	3,54149900	-1,42773000	С	3.28271600	4.69970600	-1.11097700
LT	_2 00700400	2 27247400	_2 25120400		2 01657600	1 11211200	-2 05245600
п	-3.09/00400	5.2/24/400	-2.33138400	н	2.0103/000	4.44311/00	-2.00240000
С	-5.49063400	4.39902100	-1.45174300	С	3.02391200	3.91496000	0.02435200
Η	-5.85560900	4.79936900	-2.38516600	Η	8.16152000	-4.83558900	1.18121300
С	-6.13259300	4,74864200	-0.25454900	н	6,45885900	8.71119000	-0.73907700
č	-5 66307400	1 23020000	0 06102200	11	-8 42021200	6 70227100	_1 /1206200
		4.2000000	1 07650000	п	0.42921200	0.10321100	1 76024200
Н	-0.10093600	4.50999/00	T.8/029800	Н	-6.606/9800	-6.6054/200	1./0934300
С	-4.56687100	3.37270200	0.98045300	Fe	0.00548200	-0.00490500	0.04516600
Η	-4.20513700	2.97430600	1.91824200	Cl	-0.04016000	-0.04362700	2.28468000

Coordinates of optimized structure of MnTCPP:

		1					
0	-6.94277400	-7.06646800	0.97484800	С	-6.28782200	-6.75292000	-0.02515300
Ν	0.09105000	-2.01632400	-0.04396500	0	7.37767700	-6.59637700	-1.20168100
0	-7.23169100	6.81985400	0.93829400	0	-7.39040100	6.46478200	-1.31218100
С	-5.33565400	4.61762400	-1.29695500	С	-6.82882300	6.23116100	-0.07094500
Н	-5.82987000	4.87293100	-2.22187900	0	7.08462600	6.90625800	-1.20846800
С	-2.53006700	2.35800200	-0.06164800	С	6.31004100	6.78270500	-0.26555300
С	-5.09692800	4.91176000	1.09835600	С	-2.74876700	-1.22948500	-0.20793400
Н	-5.42146400	5.39384700	2.00939400	С	-4.12837800	-0.85385900	-0.31781100
0	-6.46165700	-7.40419200	-1.23196900	Н	-4.95028000	-1.54382700	-0.37540200
Ν	-0.08661000	2.03594200	0.09736600	С	-4.18563400	0.50840400	-0.30350000
Ν	1,94131500	0.09291800	-0.19891700	Н	-5.06393100	1,12642600	-0.33768600
N	-1.93887700	-0.07687900	-0.17009600	С	-2.84067800	1.00109300	-0.20066400
0	6.38983700	7,67951200	0.79163500	С	-1.23349600	2.83348300	0.08250900
Ċ	-5.73985900	5.23716900	-0.10513600	Ċ	0.98540300	2.93031100	0.06308500
Ĉ	2.74368200	1.24596400	-0.24786900	Ĉ	2.31592800	2.56938300	-0.10212100
0	7.30643700	-6.72751300	1.04761700	Ċ	2.84854200	-0.98414100	-0.24746100
С	6.85473100	-6.21314000	-0.16049700	C	4.18753400	-0.48873400	-0.38623800
С	5.74647700	-5.22041800	-0.10429200	H	5.06614700	-1.10281400	-0.46353200
С	5.00152100	-5.00099800	-1.27213500	C	4.12473500	0.87334200	-0.37700900
н	5 25477200	-5 56215100	-2 16000800	н	4 94498600	1 56526900	-0 43382800
C	3 96206200	-4 07474900	-1 28210300	C	3 93126600	4 06679100	-1 34361000
Н	3 38840400	-3 91787900	-2 18515400	н	3 63201200	3 58783100	-2 26572200
C	3 65415000	-3 33131900	-0 13094800	C	3 74617900	4 28950100	1 05532700
c	4 41608100	-3 53522400	1 02949900	н	3 32104700	3 96771700	1 99591100
н	4 19608200	-2 95957100	1 91775300	Ċ	4 69830900	5 30814000	1 03424800
C	5 45070900	-4 46997600	1 04410600	н	5 01578300	5 74015300	1 97520500
ц	6 0/108200	-1 57536300	1 94583700	Ċ	5 26984200	5 72109000	-0 17913200
C	2 53244800	-2 33460400	-0 13607400	c	0 49484800	4 28998800	0.09243500
c	1 22754200	-2 80819300	-0 02649000	ц	1 11/33900	5 16811200	0.05215500
c	0 86644600	-1 20962400	0.02049000	C	-0 86277700	1 23079900	0.000077100
ц	1 56345000	-5 02669200	0.10167400	ц	-1 55687900	5 05135900	0.10371100
C	-0 18990900	-1 26887800	0.10107400	C	1 88656300	5.03133300	-1 36592500
с ц	-0.40990900	-4.20007000	0.00307300	U U	5 34775100	5 38792900	-2 20201700
C	-0.97211200	-2 90//8500	-0 01603600	C	3 34620200	3 65937600	-0 13302200
C	-0.97211200	-2.54780000	-0.01003000	c	-1 06273300	3 97983700	1 11007300
c	-2.31401000	-2.54700000	-0.10978100	U	-2 57247000	2 72507000	2 04024200
C	-3.34464700	-3.03947200	-0.10273400	п	-3.37347900	2 60441500	2.04024300
U	-3.01304300	-4.3/499000	-1.20/02900	U	-4.30073300	2 21260100	-1.2/990800
п	-3.07838200	-4.14558000	-2.17778100	п	-3.96507700	2 25/1200100	-2.20062000
U	-4.37033300	-5.59044000	-1.20192000	U U	-3.03143200	J.JJ4IJ000	-0.07903100
п	-4.77992700 E 26042100	-5.95269400	-2.13912000	п	0.1000E000	7.0100000	1.41004100
C	-3.26943100	-5.66752100	-0.08273300	п	-8.10293900	7.12739100	-1.23630100
	-3.00189000	-4.9001/400	1.00330100	H	- / . 1423 / 900	-0.09/31900	-1.14144200
н	-3.34330/00	-3.200/3400	1.98/14300	Н М	0./3943400	-0.3U1/0300	1.80386/00
	-4.04904900	-3.9430/000	1.07676400	MUN	0.00193000	0.00202900	0.23382200
н	-2.04109800	-3.30324200	1.9/0/0400	CI	0.042/3800	-0.33/9/900	2.43892600

Coordinates of optimized structure of NiTCPP:

0	6.77591800	7.10307800	1.28331600	Η	3.41448400	4.36250600	-0.98593500
Ν	1.92314000	-0.00701600	-0.01092000	С	6.36243900	6.24867600	2.03027700
0	-6.24319200	6.89620500	-3.18625300	0	6.59990500	-7.26649000	-1.29006500
С	-5.30774600	4.77261600	-0.37528900	0	-7.13682200	6.69794200	-1.13750400
Н	-6.05950300	5.09941900	0.33226000	С	-6.23496900	6.37534900	-2.09656400
С	-2.38703300	2.34224800	-0.53484900	0	-6.60940600	-6.53318700	3.22177200
С	-4.28889600	4.91894700	-2.56088700	С	-6.41850400	-6.26325800	2.06820500
Н	-4.26892500	5.36252900	-3.54944700	С	1.02736500	2.75946100	0.32409700
0	6.81349700	6.12457600	3.30229900	С	0.59516400	4.13222600	0.29293800
Ν	-1.94929700	-0.01960700	0.00125300	Η	1.20746800	4.98334300	0.54598200
Ν	-0.00314300	-1.95672300	0.00864300	С	-0.69209300	4.12936600	-0.13093200
Ν	-0.01517000	1.92199900	-0.01064400	Η	-1.34306300	4.97635800	-0.28172200
0	-7.15795800	-6.86193300	1.09592700	С	-1.07661600	2.75128900	-0.29099000
С	-5.26835300	5.33625400	-1.65481000	С	-2.78678400	1.02369700	-0.33138900
С	-1.05134000	-2.79390600	0.32248200	С	-2.77851800	-1.08165300	0.27979300
0	7.13305700	-6.09026800	-3.09572100	С	-2.36999500	-2.39216600	0.52047900
С	6.40321800	-6.29471300	-1.96615200	С	1.05748100	-2.78807800	-0.27708000
С	5.37170200	-5.25566700	-1.63845400	С	0.66075900	-4.16642400	-0.15422400
С	4.91107400	-5.18862500	-0.31955100	Η	1.29892100	-5.01678100	-0.33697100
Η	5.32596900	-5.87410400	0.40999000	С	-0.62724500	-4.16882900	0.26737200
С	3.94627600	-4.25836700	0.04388200	Η	-1.24656600	-5.02178100	0.49620000
Н	3.61154800	-4.20184000	1.07406300	С	-3.94862000	-3.41511700	2.18352200
С	3.39891000	-3.38416300	-0.90515500	Н	-3.59909100	-2.69153600	2.91206500

C	3 84653500	-3 46793300	-2 22778500	C	-3 86194700	-4 35241500	-0 03187400
ц	3 /1818/00	-2 81197000	-2 07782000	с ц	-3 44857600	-4 36241500	-1 03446000
	4 00150500	-2.01197000	-2.97702900		-3.44037000	-4.30241300	-1.03440000
C	4.82150500	-4.39189600	-2.5916/000	C	-4.84107600	-5.2/565900	0.32135400
Н	5.10744800	-4.45581100	-3.63795300	Н	-5.14099100	-6.01674000	-0.41453300
С	2.36306500	-2.37331400	-0.52717000	С	-5.38460200	-5.27665500	1.61093600
С	2.75915500	-1.05239400	-0.33217700	С	-4.15668000	-0.69650900	0.12156900
С	4.13485700	-0.63433900	-0.25989900	Η	-5.00422700	-1.34659800	0.27363200
Н	4,98663400	-1.26254800	-0.46979700	С	-4.15968400	0.59104500	-0.30106600
C	4 13215100	0 65419000	0 16051900	н	-5 01081700	1 20354600	-0 55329500
U	1.00022000	1 20620000	0 24010200	C	-1 01/2/000	-4.24620500	2 54275000
п	4.96023900	1.29039000	0.34019200		-4.91434600	-4.34020300	2.54275600
C	2.75359900	1.04906600	0.28863400	Н	-5.31802500	-4.369/0600	3.5480/600
С	2.34500200	2.35890000	0.53271600	С	-3.40532500	-3.40515800	0.89176300
С	3.37512500	3.36907400	0.92377800	С	-3.36301800	3.95116000	-2.19365700
С	3.92725100	3.34384500	2.21079700	Η	-2.60686600	3.62971900	-2.90174100
Η	3.58892500	2.59569000	2.91956600	С	-4.38069400	3.80182400	-0.01343200
С	4.89377200	4,26865100	2,59037600	Н	-4,40724700	3.37677100	0,98405300
н	5 30953100	4 24419700	3 58987900	C	-3 39806600	3 37478000	-0 91652400
	5 22120500	5 22602000	1 60115200	Ц	-7.01066200	-6 12000200	0.24004200
C	1.7000000	5.23002000	1.00113300	п	-7.01000300	-0.43090300	0.24094200
C	4.78998800	5.26531400	0.39207000	н	-7.71583600	7.37591400	-1.51643400
Н	5.142/5900	6.01540800	-0.3060/600	Н	1.4/398300	6.82115600	3.43289000
С	3.82239400	4.34190900	0.01882700	Η	6.98337200	-5.20413100	-3.44779500
				Ni	-0.01160100	-0.01562900	-0.00309300
С	oordinates of	ontimized stru	icture of ZnT(СРР			
0	-6 33059500	7 60335900	1 09177600	U I I	-2 02/80000	1 22872300	2 08002800
N	-0.33039300	0 10107000	0.02570000		-2.92409000	4.22072300	2.00002000
IN	-2.04293400	0.12197000	-0.03578900	C	-6.116/4500	6.92637200	0.11313300
0	7.64000700	6.30868100	1.01456/00	0	-7.40720900	-6.552/1200	-1.059/6100
С	5.06237900	4.92378900	-1.15931300	0	7.14440000	6.74171100	-1.13057100
Η	5.29189100	5.48058100	-2.05925200	С	6.95094600	6.09612800	0.04547900
С	2.59014100	2.28283600	0.00949500	0	6.03025600	-7.84745200	-0.95568700
С	5.52869700	4.40114000	1.15264800	С	6.11132000	-6.97310600	-0.13765500
Н	6.12388400	4.57090600	2.04226200	С	-0.92198200	2.92459700	0.01147100
0	-6.76683300	7.13348400	-1.05851100	С	-0.41388000	4.27687200	0.01098400
N	2.04568800	-0.13144100	0.03645600	н	-1.01539300	5.17250400	0.00522500
N	-0 12540200	-2 04942100	-0 00736800	C	0 94141200	4 19306900	0 01633800
NT	0.12010200	2.01912100	0.00630000	Ц	1 64007200	5 00020000	0.02052500
11	7 10075000	2.03900300	0.00030900		1.07000/000	2.70044000	0.02032300
Ő	7.10073000	-6.99411100	0.78721500	Č	1.2/920400	2.70044000	0.00678200
C	5.82474900	5.12//6400	-0.00465500	C	2.92958000	0.91938000	0.01150100
С	0.92499600	-2.93395400	-0.01865700	С	2.79374900	-1.28207400	0.00081200
0	-7.49945700	-6.50815900	1.15773400	С	2.28818100	-2.59302100	-0.01338400
С	-6.96937100	-6.11475100	-0.03173200	С	-1.27672100	-2.79789600	-0.00854300
С	-5.83933900	-5.13007200	0.03192500	С	-0.93847600	-4.20244100	-0.02670800
С	-5.54741800	-4.39768200	-1.12312500	Η	-1.64360300	-5.01887900	-0.04576100
Н	-6.14811100	-4.56633800	-2.00908400	С	0.41686200	-4.28623200	-0.02426300
С	-4.50703300	-3.47814100	-1.13108900	Н	1.01683300	-5.18295800	-0.02562100
Н	-4.29512500	-2.91201800	-2.03171900	С	3.48201100	-4.48107700	-1.18755300
C	-3 71199800	-3 28070100	0 00649500	ч	2 91/51800	-1 25072700	-2 08277600
c	-3 99075200	-1 03480800	1 15210000	C	4 02275600	-1 02896200	1 11310000
	2 27025200	2 0050000	2 02774700		2 06126100	2 46240700	2 02451600
п	-3.37833200	-3.90304300	2.03774700	п	3.00120100	-3.40340700	2.02451000
C	-5.0419/400	-4.94624600	1.16/03500	C	4.94/96000	-5.06809000	1.09961/00
Н	-5.19984100	-5.536/8200	2.06544000	Н	5.46/61500	-5.30895200	2.02314500
С	-2.58737600	-2.29154700	-0.00521700	С	5.15325200	-5.82120700	-0.06183700
С	-2.92727200	-0.92772700	-0.00740500	С	4.19714500	-0.94329600	-0.05482100
С	-4.27812200	-0.41903600	0.05322100	Н	5.01152000	-1.64886400	-0.11134000
Н	-5.17313900	-1.01945800	0.10376000	С	4.28069300	0.41207100	-0.04796700
С	-4.19389600	0.93623400	0.05546100	Н	5.17438500	1.01464000	-0.09656600
Н	-5.00728400	1.64319600	0.10800400	С	4.39748900	-5.52512100	-1.20062100
C	-2 79046900	1 27367300	-0 00259800	н	4 54440000	-6 12518300	-2 09088600
ĉ	-2 285/1100	2 58/58100	0.00725800	C	3 28077400	-3 71/83700	_0_03108400
c	2.20341100	2.30430100	0.00723000	c	1 10660400	-3.71403700	1 15400000
C	-J.2/0200UU	J. /U00UZUU	U.UZIO8ZUU 1 10540000	U 77	4.40000400	J.40JII/UU	1.13400000
C	-4.01852500	4.01904500	-1.12549900	H	4.23884100	2.92628600	2.05/39100
Н	-3.86181400	3.44403800	-2.03183200	C	4.01/62700	4.00620500	-1.15043300
С	-4.94093200	5.05953700	-1.11836500	Η	3.43219900	3.84752000	-2.04971300
Η	-5.50326200	5.29641600	-2.01293000	С	3.71454100	3.27306300	0.00405300
С	-5.14296600	5.80773600	0.04581500	Η	7.14578900	-6.16027100	1.27186100
С	-4.40972800	5.50181900	1.19641600	Н	7.89219100	7.34315600	-0.99815100
Н	-4.57817400	6.08590400	2.09360300	Н	-7.37195800	7.87616600	-0.91462500
С	-3.48676400	4.46421900	1.18256200	Н	-7.16394200	-5.96477700	1.88138800
				Zn	0.00140500	-0.00430100	-0.00073000
					· · · · •		

References

- 1. D. Feng, Z. -Y. Gu, J. -R. Li, H. -L. Jiang, Z. Wei and H. -C. Zhou, *Angew. Chem. Int. Ed.*, 2012, **51**, 10307-10310.
- 2. B. J. Deibert, and J. Li, Chem. Commun. 2014, 50, 9636-9639.
- 3. (a) L. J. Shen, W. M. Wu, R. W. Liang, R. Lin and L. Wu, *Nanoscale*, 2013, 5, 9374-9382;
 (b) L. J. Shen, S. J. Liang, W. M. Wu, R. W. Liang and L. Wu, *Dalton Trans.*, 2013, 42, 13649-13657;
 (c) W. Huanga, N. Liua, X. Zhanga, M. Wub, and L. Tang, *Applied Surface Science*, 2017, 425, 107–116;
 (d) H. Zhao, Q. Xia, H. Xing, D. Chen and H. Wang, *ACS Sustainable Chem. Eng.*, 2017, 5, 4449–4456 (e) L. Shi , T. Wang , H. Zhang , K. Chang , X. Meng, H. Liu and J. Ye, *Adv. Sci.*, 2015, 2, 1500006;
 (f) L. W. Wang, T. Y. Zeng, G. Y. Liao, Q. G. Cheng and Zhiquan Pan, *Polyhedron*, 2019, 157, 152-162;
 (g) D.-M. Chen, C.-X.Sun, C. S. Liu and M. Du, *Inorg. Chem.*, 2018, 57, 7975-7981.