Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting information

Facile Hydrogenation of Cinnamaldehyde to Cinnamylether by Employing a Highly Re-usable "Dip-Catalyst" containing Pt Nanoparticles on a Green Support

M. Nasiruzzaman Shaikh*, Md. Abdul Aziz and Zain H. Yamani

Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran-31261, Saudi Arabia

Figure S1: m/z value detected by GC-MS with the series of homologous alcohol.

Figure S2. a) GC conversion of the cinnamylmethyl ether from the reaction of 1 mmol of cinnamaldehyde and methanol at 115 °C under 30 bar H_2 pressure; (b) GC-MS spectra and its fragmentation pattern of cinnamylmethyl ether.

Figure S3. a) GC conversion of the cinnamylmethyl ether from the reaction of 1 mmol of cinnamaldehyde and methanol at 115 °C under 30 bar N_2 pressure (without H_2) and GC-MS spectra and its fragmentation pattern of (b) cinnamaldehyde (starting compound); (c)cinnamylmethyl ether; (d) Cinnamyl diacetal.

Figure S4. a) GC conversion of the cinnamylethyl ether from the reaction of 1 mmol of cinnamaldehyde and ethanol at 115 °C under 30 bar H_2 pressure; (b) GC-MS spectra and its fragmentation pattern of cinnamylethyl ether.

Figure S5. a) GC conversion of the cinnamylpropyl ether from the reaction of 1 mmol of cinnamaldehyde and n-propanol at 135 °C under 30 bar H_2 pressure; (b) GC-MS spectra and its fragmentation pattern of cinnamylpropyl ether.

Figure S6. a) GC conversion of the cinnamylbutyl ether from the reaction of 1 mmol of cinnamaldehyde and n-butanol at 135 °C under 30 bar H_2 pressure and GC-MS spectra and its fragmentation pattern of (b) Cinnamaldehyde (starting compound); (c) cinnamylbutyl ether.

Figure S7. a) GC conversion of the cinnamylhexyl ether from the reaction of 1 mmol of cinnamaldehyde and n-hexanol at 135 °C under 30 bar H_2 pressure and GC-MS spectra and its fragmentation pattern of (b) Cinnamaldehyde (starting compound); (c) cinnamylhexyl ether.

Figure S8. a) GC conversion of the cinnamyloctyl ether from the reaction of 1 mmol of cinnamaldehyde and n-octanol at 135 °C under 30 bar H_2 pressure and GC-MS spectra and its fragmentation pattern of (b) Cinnamaldehyde (starting compound); (c) cinnamyloctyl ether.

Figure S9. a) GC conversion of the cinnamylmethyl ether from the reaction of 1 mmol of cinnamaldehyde and methanol-D4 at 115 °C under 30 bar H_2 pressure; (b) GC-MS spectra and its fragmentation pattern of deuterated cinnamylmethyl ether.