Supporting Information

Title: Dynamic Charge transfer through Fermi Level Equilibration in p-CuFe₂O₄/

n-NiAl LDH interface towards photocatalytic application

Snehaprava Das, SulagnaPatnaik and K. M. Parida*

Center for Nano Science and Nano Technology SOA Deemed to be University, Bhubaneswar-751030,Odisha(India)

Fig. S1 Band gap energy values assessed from UV-vis DRS of (a) neat Ni Al LDH, (b) CuFO, and (c) 50% LDH-CuFO

Fig. S2 Reusability test of the photocatalyst towards H_2 production after four successive cycles in 60 min interval with catalyst 50% LDH-CuFO

Fig. S3 Reusability test of the photocatalyst towards (a) Cr (VI) reduction in 60 min. (b) XRD after reaction.

Table S1: Rate constant (k) and Regression co-efficient (R^2) values of the synthesized samples in Cr (VI) reduction

Photocatalyst	Rate Constant(k)	R ²
Ni Al LDH	0.01229	0.9638
CuFe ₂ O ₄	0.00359	0.9520
40% LDH-CuFO	0.01821	0.9856
50%LDH-CuFO	0.04464	0.9912
60%LDH-CuFO	0.01484	0.9849

Fig. S4 Colour elemental mapping of 50% LDH-CuFO

Fig. S5 XPS spectra of 50% LDH-CuFO after photocatalytic experiment.

Fig. S6 Transient photocurrent study of NiAl LDH, $CuFe_2O_4$ and X% LDH-CuFO .

Catalytic system	Concentration of	Light	Preparation	Catalytic	pН	Results	Refs
------------------	------------------	-------	-------------	-----------	----	---------	------

Catalytic system	UV-vis light	Preparation	eparation		H2 evolution	Ref.
	Source	Method	Incident	agents	$(\mu \text{ mol } g^{-1}h^{-1})$	
			light			
CdS/ZnCr LDH	450 W Xenon	Expoliation	λ>420	Na ₂ SO ₃ +Na ₂ S	374	1
FeMgAl LDH	125 W mercury	Coprecipitation	λ> 420	СН3ОН	493	2
NiZnCr LDH	125 W mercury	Coprecipitation	λ> 420	CH ₃ OH	1915	3
ZnxCd _{1-x} S nanosheet/ ZnCdAl LDH	300W Xenon	Impregnation	λ> 420	Na ₂ S/Na ₂ SO ₃	6690	4
NiCo LDH/p doped CdS	300W Xenon	In-situ hydrothermal	λ>420	Na ₂ S/Na ₂ SO ₃	8665	5
CdS/NiFe LDH	300W Xenon	In-situ growth	λ>420	СНзОН	469	6
Ni Al LDH/CuFe ₂ O ₄	125 W mercury	Coprecipitation	λ>420	СНзОН	15385	Present work

Table S2: Comparison of H₂ Evolution values by Different LDH-modified Nano composites

Table S3: A comparative study of Cr(VI) reduction at different pH over heterostructure 50% NiAl LDH-CuFO with other reported material

	Cr(VI)	source	method	activity time(h)		(%)	
FeOOH/RGO	10 ppm	Visible light	in situ hydrothermal	3	2	94	7
MnO2@RGO	10 ppm	Visible light	in situ hydrothermal	2	2	97	8
Formate ion containing g- C3N4	20ppm	Visible light	in situ hydrothermal	4	5	55	9
50% NiAl LDH-CuFe ₂ O ₄	20ppm	Visible lights	Co-Precipitation followed by sol gel	1	5.2	93	Present work

References

1 G. Zhang, B. Lin, W. Yang, S. Jiang, Q. Yao, Y. Chen, B. Gao, RSC Adv., 2015, 5(8), 5823-5829.

- 2. K. Parida, M. Satpathy, L. Mohapatra, J. Mater. Chem. 2012, 22(15), 7350-7.
- 3. N. Baliarsingh, L. Mohapatra, K. Parida, J. Mater. Chem. A. 2013, 1(13), 4236-43

4. J. Shi, IU. Islam, W. Chen, F. Wang, Z. Xu, S. Xu, Y. Li, J. Lu, *Inter. J. Hydrog. Energy*, 2018, *43*(**42**), 19481-91.

5. S.Li, L. Wang, Y. Li, L. Zhang, A. Wang, N. Xiao, Y. Gao, N. Li, W. Song, L. Ge, J. Liu, *Appl. Catal. B: Environ.*, 2019, **254**,145-55.

6. R. Boppella, C.H. Choi, J. Moon, D.H. Kim, Appl. Catal. B: Environ., 2018, 239,178-86.

7. D.K. Padhi, K. Parida., *J. Mater. Chem.* A , 2014, *2*(**26**), pp.10300-10312.

8. D.K. Padhi, A. Baral, K. Parida, S.K. Singh, M.K Ghosh, J. Phys. Chem. C. 2017, 121(11),6039-49.

9. G. Dong, L. Zhang, J. Phys. Chem. C., 2013;117(8),4062-8.