Electronic Supplementary Information

Mechanistic insight into an azo-radical promoted dehydrogenation of heteroarene towards N-heterocycles.

Amreen K. Bains^a, Debashis Adhikari*^a

^aDepartment of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar-140306, India.

E-mail: adhikari@iisermohali.ac.in

Table of Contents

- 1. Optimization Table
- 2. Control experiments
 - 2.A. Intermediate tracking and isolation
 - 2.B. Radical quenching experiment
 - 2.C. Procedure for the adduct formation of pyrimidinyl radical
 - 2.D. Detection of H_2O_2
 - 2.E. Mercury drop test
- 3. Kinetics analysis
 - 3.A. Kinetic analysis for dehydrogenative aromatization of 4 varying reaction conditions
 - 3.B. Aromatic dehydrogenation of **4** at three different temperature
 - 3.C. Saturation kinetics for aromatic dehydrogenation of 4 at three different temperature
- 4. ¹H and ¹³C NMR spectra
- 5. Reference

1. Optimization table

Table S1: Optimization of reaction conditions for pyrimidine synthesis

$\bigcirc H + H + H + H + H + H + H + H + H + H $				
			Yield (%)	
Entry	Catalyst	Base	3 a	
1	-	KO ^t Bu	15	
2	1	KO ^t Bu (0.1eq)	33	
3	1	KO ^t Bu (0.25eq)	66	
4	1	KO ^t Bu (0.5eq)	90	
5	1 (2.5 mol%)	KO ^t Bu	61	
6	1 (7 mol%)	KO ^t Bu	91	
7	1 (5 mol%)	КОН	35	
8	1 (5 mol%)	K ₂ CO ₃	n.r	
9 ^a	1 (5 mol%)	KO ^t Bu	60	
10 ^b	1 (5 mol%)	KO ^t Bu	82	
11 ^c	1 (5 mol%)	KO ^t Bu	19	
12 ^d	1 (5 mol%)	KO ^t Bu	60	
13 ^e	1 (5 mol%)	KO ^t Bu	45	
14^{f}	1 (5 mol%)	KO ^t Bu	92	
15	1	-	n.r	

Reaction condition: **1 (5 mol%),** benzyl alcohol (1 mmol), 1-phenyl ethanol (1.25 mmol), benzamidine (1 mmol), base (0.5 mmol), toluene (2 mL), 80 °C, O₂ balloon, 8 h (isolated yield). ^aReaction temperature 80 °C, without O₂ balloon, ^bReaction temperature 100 °C, without O₂ balloon, ^cinert atmost phere, ^doxygenated toluene as solvent, ^cReaction time: 6 h, ^fReaction time: 12 h.

2. Control experiments

Scheme S1. Plausible pathway for 1,3,5 -triazine formation

Scheme S2. Plausible pathway for pyrimidine formation

2.A. Tracking of intermediates and isolation

In a 5 mL vial, benzyl alcohol (1 mmol), 1-(4-fluorophenyl)ethanol (1 mmol), KO^tBu (0.5 mmol), 1 (5 mol%) were added followed by 2 mL toluene. The reaction mixture was stirred at 80 °C for 5 h. Aldol condensation product (chalcone) was observed in 72% yield.

Figure S1. ¹H NMR spectrum (400 MHz) of 1-(4-fluorophenyl)-3-phenylprop-2-en-1-one in CDCl₃.

In a 5 mL vial, pre-synthesized aldol condensation product chalcone (1 mmol), benzamidine (1 mmol), KO^tBu (0.5 mmol), **1** (5 mol%) were added followed by 2 mL toluene. The reaction mixture was stirred at 80 °C for 5 h with O_2 balloon. 2,4,6-triphenyl-pyrimidine was observed as desired product in 89% yield.

4 (1 mmol), KO^tBu (0.5 mmol), **1** (5 mol%) was taken in 2 mL toluene. The reaction mixture was stirred at 80 °C for 5 h with O_2 balloon. 2,4,6-triphenyl-pyrimidine was isolated in 80% yield, concluding that **4** is the purported intermediate that leads to pyrimidine via dehydrogenative aromatization.

Subsequently, other controls were performed. The observation is given in the following table.

S.No	Reaction Condition	(Pyrimidine)Yield (%)
1.	Standard reaction condition	83%
2.	Without catalyst (at 80 °C)	18%
3.	Without base	0%
4.	Inert condition	11%
5.	NiCl ₂ as catalyst	15%

Table S2: Pyrimidine formation under different reaction conditions

In a 5 mL vial, 1-phenylethanol (2.25 mmol), benzamidine (1 mmol), KO^tBu (0.5 mmol), **1** (5 mol%) were added followed by 2 mL toluene. The reaction solution was stirred at 80 °C for 8 h with O_2 balloon. Desired product 2-methyl-2,4,6-triphenyl-1,2-dihydropyrimidine was characterised by ESI-MS. (M+H⁺= 325.1710).

Figure S2. Mass spectrum of 2-methyl-2,4,6-triphenyl-1,2-dihydropyrimidine.

2.B. Radical quenching experiment

Table S3: Product yield upon varying equivalence of radical quencher

S.No	TEMPO equivalence	Yield (%)
1.	1.0 eq	35%
2.	2.0 eq	18%

Benzyl alcohol (1 mmol), 1-phenylethanol (1.25 mmol), benzamidine hydrochloride (1 mmol), KO^tBu (0.5 mmol), **1** (5 mol%) and varying equivalent of TEMPO, followed by 2 mL toluene were added. The reaction mixture was stirred at 80 °C for 8 h under 1 atm of O_2 , kept as a O_2 -filled balloon. The pyrimidine product yield decreased with addition of TEMPO.

TEMPO quenching during dehydrogenation of 4

In a 5 mL vial, 4 (1 mmol), KO^tBu (0.5 mmol), 1 (5 mol%), and 1 mmol of TEMPO were added followed by 2 mL toluene. The resulting solution was kept under a balloon filled with O_2 . The reaction mixture was stirred for 5 h at 80 °C. The reaction mixture was cooled to room temperature and concentrated *in vacuo*. The desired product 2,4,6-triphenyl-pyrimidine was observed in 5% yield.

2.C. Procedure for the pyrimidinyl radical -TEMPO adduct

In a 5 mL vial, 4 (1 mmol), KO^tBu (0.5 mmol), 1 (5 mol%) were taken in 5 mL toluene. After stirring the reaction mixture for 15 minutes, 0.6 equiv TEMPO (0.6 mmol) was added to the reaction mixture and the solution was kept on stirring at 80 °C for 5 h. The arrested radical by the formation of TEMPO-adduct was characterised by ESI-MS. (M-H⁺ = 464.2616).

Figure S3. Mass spectrum of pyrimidinyl radical -TEMPO adduct.

2.D. Detection of H₂O₂

For oxidation of alcohols, presence of H_2O_2 in the reaction mixture was analyzed by UV–Vis spectroscopy^{s1} using the iodometric assay.

Figure S4. UV-Visible spectrum of I_3^- ion formation in presence of H_2O_2 .

2.E. Mercury drop test

To establish the homogeneous catalytic condition in the reaction, we have carried out mercury drop experiment. In a typical mercury drop test, 5 mL vial was charged benzyl alcohol (1 mmol), 1-phenylethanol (1.25 mmol), benzamidine hydrochloride (1 mmol), KO^tBu (0.5 mmol) and 5 mol% of **1** followed by 2 mL toluene. To this reaction mixture, a drop of mercury was added and was closed with rubber septum. The resulting solution was spurged with O_2 . The reaction mixture was stirred at 80 °C for 8 h. The isolation of the product (in 72% yield) after 8 h confirmed the homogeneous behaviour of the catalyst in solution.

3. The kinetics analysis

The kinetic experiments were analyzed by UV-Vis spectroscopy.

3.A. Kinetic analysis for dehydrogenative aromatization of 4 varying reaction conditions

- *A) Reaction conditions:* **1** (5 mol%), **4** (1 mmol), KO^tBu (0.5 mmol), toluene (2 mL), 80 °C, O₂ balloon, 8 h. (Optimized reaction conditions)
- *B) Reaction conditions:* **4** (1 mmol), KO'Bu (0.5 mmol), toluene (2 mL), 80 °C, O₂ balloon, 8 h. (Absence of catalyst)
- *C) Reaction conditions:* **4** (1 mmol), KO^tBu (0.5 mmol), toluene (2 mL), 140 °C, 8 h. (Absence of catalyst and O₂ balloon)

Figure S5. Kinetic analysis (by UV–Vis spectroscopy)for pyrimidine formation.

3.B. Aromatic dehydrogenation of 4 at three different temperature

Reaction conditions: 1 (5 mol%), 4 (1 mmol), KO^tBu (0.5 mmol), toluene (2 mL), 70-90 °C, O₂ balloon, 8 h.

Set 1:

Figure S6. Kinetic analysis (by UV–Vis spectroscopy) for pyrimidine formation at 70 °C, 80 °C and 90 °C.

Set 2:

Figure S7. Kinetic analysis (by UV–Vis spectroscopy) for pyrimidine formation at 70 °C, 80 °C and 90 °C.

3.C. Saturation kinetics for aromatic dehydrogenation of 4 at three different temperatures

Reaction conditions: **1** (5 mol%), **4** (0.3 M, 0.6 M, 0.9 M, 1.2 M, 1.5 M), KO^tBu (0.5 mmol), toluene (2 mL), 70 °C, 80 °C, 90 °C, O₂ balloon, 8 h.

Figure S8. Kinetic analysis (by UV-Vis spectroscopy) for pyrimidine formation at 70 °C.

Figure S9. Kinetic analysis (by UV–Vis spectroscopy) for pyrimidine formation at 80 °C.

Figure S10. Kinetic analysis (by UV–Vis spectroscopy) for pyrimidine formation at 90 °C.

4. ¹H and ¹³C NMR spectra

Figure S11. ¹H NMR spectrum (400 MHz) of 2b in CDCl₃.

Figure S12. ¹³C NMR spectrum (100 MHz) of 2b in CDCl₃.

Figure S13. ¹H NMR spectrum (400 MHz) of 2c in CDCl₃.

Figure S15. ¹H NMR spectrum (400 MHz) of 2d in CDCl₃.

Figure S19. ¹H NMR spectrum (400 MHz) of 3b in CDCl₃.

Figure S20. ¹³C NMR spectrum (100 MHz) of **3b** in CDCl₃.

Figure S23. ¹³C NMR spectrum (100 MHz) of 3d in CDCl₃.

Figure S25. ¹³C NMR spectrum (100 MHz) of 3e in CDCl₃.

Figure S29. ¹H NMR spectrum (400 MHz) of 3i in CDCl₃.

Figure S31. ¹³C NMR spectrum (100 MHz) of 3j in CDCl₃.

Figure S32. ¹H NMR spectrum (400 MHz) of 3k in CDCl₃.

Figure S33. ¹³C NMR spectrum (100 MHz) of 3k in CDCl₃.

5. Reference

S1) H. Jenzer, W. Jones, H. Kohler. H, J. Biol. Chem. 1986, 261, 15550-15556.