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1. Optimization table
Table S1: Optimization of reaction conditions for pyrimidine synthesis

OH HN.__NH,
©/\OI:Ir @)\ N - 1 ( x mol%), base - N“EN
' Toluene, 80 °C, 8 h ‘)'\ﬂ\.
[ % 02

Yield (%)
Entry Catalyst Base 3a
1 - KO'Bu 15
2 1 KO'Bu (0.1eq) 33
3 1 KO'Bu (0.25¢eq) 66
4 1 KO'Bu (0.5¢eq) 90
5 1 (2.5 mol%) KO'Bu 61
6 1 (7 mol%) KO'Bu 91
7 1 (5 mol%) KOH 35
8 1 (5 mol%) K,CO; n.r
92 1 (5 mol%) KOBu 60
10° 1 (5 mol%) KO'Bu 82
11¢ 1 (5 mol%) KO'Bu 19
124 1 (5 mol%) KO'Bu 60
13¢ 1 (5 mol%) KO'Bu 45
14f 1 (5 mol%) KO'Bu 92
15 1 - n.r

Reaction condition: 1 (5 mol%), benzyl alcohol (1 mmol), 1-phenyl ethanol (1.25 mmol), benzamidine (1
mmol), base (0.5 mmol), toluene (2 mL), 80 °C, O, balloon, 8 h (isolated yield). ®Reaction temperature 80 °C,
without O, balloon, "Reaction temperature 100 °C, without O, balloon, ‘inert atmostphere, Yoxygenated toluene
as solvent, *Reaction time: 6 h, fReaction time: 12 h.



2. Control experiments

Scheme S1. Plausible pathway for 1,3,5 -triazine formation
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Scheme S2. Plausible pathway for pyrimidine formation
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2.A. Tracking of intermediates and isolation

A OH

g OH (5 mol%), KOBu
N
r Toluene 80 °C

72% 18% 20%

In a 5 mL vial, benzyl alcohol (1 mmol), 1-(4-fluorophenyl)ethanol (1 mmol), KO'Bu (0.5
mmol), 1 (5 mol%) were added followed by 2 mL toluene. The reaction mixture was stirred

at 80 °C for 5 h. Aldol condensation product (chalcone) was observed in 72% yield.
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Figure S1.'H NMR spectrum (400 MHz) of 1-(4-fluorophenyl)-3-phenylprop-2-en-1-one in
CDCl;.



A2, 0 HN.__NH,
Z 1 (5 mol%), KO'Bu .
F @ O a HEl Toluene, 80 °C o I
-
JOTT

In a 5 mL vial, pre-synthesized aldol condensation product chalcone (1 mmol), benzamidine
(1 mmol), KOBu (0.5 mmol), 1 (5 mol%) were added followed by 2 mL toluene. The
reaction mixture was stirred at 80 °C for 5 h with O, balloon. 2,4,6-triphenyl-pyrimidine was

observed as desired product in 89% yield.

A3, ?
Ph, H
NXNH Reaction condition - NI <N
-
s

4 (1 mmol), KO'Bu (0.5 mmol), 1 (5§ mol%) was taken in 2 mL toluene. The reaction mixture

was stirred at 80 °C for 5 h with O, balloon. 2,4,6-triphenyl-pyrimidine was isolated in 80%
yield, concluding that 4 is the purported intermediate that leads to pyrimidine via
dehydrogenative aromatization.

Subsequently, other controls were performed. The observation is given in the following table.

Table S2: Pyrimidine formation under different reaction conditions

S.No Reaction Condition (Pyrimidine)Yield (%)
1. Standard reaction condition 83%
2. Without catalyst (at 80 °C) 18%
3. Without base 0%
4. Inert condition 11%
5. NiCl, as catalyst 15%




A, OH HN.__NH,
o~ Qe

In a 5 mL vial, 1-phenylethanol (2.25 mmol), benzamidine (1 mmol), KO'Bu (0.5 mmol), 1

1 (5 mol%), KO'Bu
Toluene, 80 °C

Detected by ESI-MS

(5 mol%) were added followed by 2 mL toluene. The reaction solution was stirred at 80 °C

for 8 h with O, balloon. Desired product 2-methyl-2,4,6-triphenyl-1,2-dihydropyrimidine was
characterised by ESI-MS. (M+H"= 325.1710).

1: TOF MS ES+

285.1302 @ 7.99e12
N~ "NH
286.1423
287.1455
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Figure S2. Mass spectrum of 2-methyl-2,4,6-triphenyl-1,2-dihydropyrimidine.



2.B. Radical quenching experiment

OH HN.__NH;
OH = o t
@/\ i . HCl + TEMPO 1 (5 mol%), KO'Bu > NN
x eq Toluene, 80 °C

Table S3: Product yield upon varying equivalence of radical quencher

S.No TEMPO equivalence Yield (%)
1. 1.0 eq 35%
2. 2.0 eq 18%

Benzyl alcohol (I mmol), 1-phenylethanol (1.25 mmol), benzamidine hydrochloride (1
mmol), KO'Bu (0.5 mmol), 1 (5 mol%) and varying equivalent of TEMPO, followed by 2
mL toluene were added. The reaction mixture was stirred at 80 °C for 8 h under 1 atm of O,,

kept as a O,-filled balloon. The pyrimidine product yield decreased with addition of TEMPO.

TEMPO quenching during dehydrogenation of 4

; 1 (5mol%), KO'B i
(5mol%o). u >

HNTSN + TEMPO N“~N
Toluene, 80 °C

e e

In a 5 mL vial, 4 (1 mmol), KOBu (0.5 mmol), 1 (5 mol%), and 1 mmol of TEMPO were

added followed by 2 mL toluene. The resulting solution was kept under a balloon filled with
O,. The reaction mixture was stirred for 5 h at 80 °C. The reaction mixture was cooled to
room temperature and concentrated in vacuo. The desired product 2,4,6-triphenyl-pyrimidine

was observed in 5% yield.




2.C. Procedure for the pyrimidinyl radical -TEMPO adduct

In a 5 mL vial, 4 (1 mmol), KO'Bu (0.5 mmol), 1 (5 mol%) were taken in 5 mL toluene.

After stirring the reaction mixture for 15 minutes, 0.6 equiv TEMPO (0.6 mmol) was added

to the reaction mixture and the solution was kept on stirring at 80 °C for 5 h. The arrested

radical by the formation of TEMPO-adduct was characterised by ESI-MS. (M-H" =

464.2616).
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Figure S3. Mass spectrum of pyrimidinyl radical -TEMPO adduct.



2.D. Detection of H,0,

For oxidation of alcohols, presence of H,O, in the reaction mixture was analyzed by UV—Vis

spectroscopy®! using the iodometric assay.
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Figure S4. UV-Visible spectrum of I3~ ion formation in presence of H,O,.

2.E. Mercury drop test

on N NH,
OH ' t
+ + HCI + Hﬂ 1 (5 mﬂl"fo}, KD Bl:l h -
1 drop Toluene, 80 °C | Il /l

To establish the homogeneous catalytic condition in the reaction, we have carried out

mercury drop experiment. In a typical mercury drop test, 5 mL vial was charged benzyl
alcohol (1 mmol), 1-phenylethanol (1.25 mmol), benzamidine hydrochloride (1 mmol),
KO™Bu (0.5 mmol) and 5 mol% of 1 followed by 2 mL toluene. To this reaction mixture, a
drop of mercury was added and was closed with rubber septum. The resulting solution was
spurged with O,. The reaction mixture was stirred at 80 °C for 8 h. The isolation of the
product (in 72% yield) after 8 h confirmed the homogeneous behaviour of the catalyst in

solution.



3. The Kkinetics analysis

The kinetic experiments were analyzed by UV—Vis spectroscopy.

3.A. Kinetic analysis for dehydrogenative aromatization of 4 varying reaction
conditions

Ph_ H
N NH Reaction condition N-<N

8% OO0

A) Reaction conditions: 1 (5 mol%), 4 (1 mmol), KO'Bu (0.5 mmol), toluene (2 mL), 80 °C, O, balloon,
8 h. (Optimized reaction conditions)

Ph

B) Reaction conditions: 4 (1 mmol), KO'Bu (0.5 mmol), toluene (2 mL), 80 °C, O, balloon, 8 h. (Absence
of catalyst)

C) Reaction conditions: 4 (1 mmol), KO'Bu (0.5 mmol), toluene (2 mL), 140 °C, 8 h. (Absence of catalyst
and O, balloon)

Product formation curve

Rate constant calculation

.
. . 0

1.0 4

0.8 4

@
§ in ( A ]
= 0.6 4 04
2 Ay — A
e
2 04 i
- 3
. . 54
0.2 4 e
0.0 4 ® 80 °C, presence of catalyst ® 80 °C, presence of catalyst
® 80 °C.absence of catalyst 0+ ® 80 °C, absence of catalyst
. 140%C . 140°C
0.2 T T T T T T T T T T T T T
0 2 4 6 8 -1 0 1 2 3 4 5 6 7 8
Time (h) Time (h)

Figure S5. Kinetic analysis (by UV—Vis spectroscopy)for pyrimidine formation.



3.B. Aromatic dehydrogenation of 4 at three different temperature

Ee

Reaction conditions: 1 (5 mol%), 4 (1 mmol), KOBu (0.5 mmol), toluene (2 mL), 70-90 °C, O, balloon, 8 h.

Set 1:

Absorbance

Figure S6. Kinetic analysis (by UV—Vis spectroscopy) for pyrimidine formation at 70 °C, 80

Set 2:

Figure S7. Kinetic analysis (by UV—Vis spectroscopy) for pyrimidine formation at 70 °C, 80
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3.C. Saturation Kkinetics

temperatures

for

aromatic dehydrogenation of 4 at three different

Reaction conditions: 1 (5 mol%), 4 (0.3 M, 0.6 M, 0.9 M, 1.2 M, 1.5 M), KO'Bu (0.5 mmol), toluene (2 mL),
70 °C, 80 °C, 90 °C, O, balloon, 8 h.
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Figure S8. Kinetic analysis (by UV—Vis spectroscopy) for pyrimidine formation at 70 °C.
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Figure S9. Kinetic analysis (by UV—Vis spectroscopy) for pyrimidine formation at 80 °C.
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Figure S10. Kinetic analysis (by UV—Vis spectroscopy) for pyrimidine formation at 90 °C.

4. 'H and C NMR spectra
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Figure S11. '"H NMR spectrum (400 MHz) of 2b in CDCl;.
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Figure S12. 3C NMR spectrum (100 MHz) of 2b in CDCls.
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Figure S13. '"H NMR spectrum (400 MHz) of 2¢ in CDCl;.
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Figure S14. 3C NMR spectrum (100 MHz) of 2¢ in CDCls.
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Figure S15. 'H NMR spectrum (400 MHz) of 2d in CDCl;.
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Figure S17.'H NMR spectrum (400 MHz) of 2e in CDCl;.
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Figure S18. 'H NMR spectrum (400 MHz) of 3a in CDCl;.
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Figure S19. 'H NMR spectrum (400 MHz) of 3b in CDCl;.
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Figure S21. '"H NMR spectrum (400 MHz) of 3¢ in CDCls.
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Figure S22. 'H NMR spectrum (400 MHz) of 3d in CDCl;.
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Figure S23. 3C NMR spectrum (100 MHz) of 3d in CDCl;.
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Figure S24. "H NMR spectrum (400 MHz) of 3e in CDCl;.
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Figure S25. 3C NMR spectrum (100 MHz) of 3e in CDCl;.
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Figure S26. 'H NMR spectrum (400 MHz) of 3f in CDCl;.
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Figure S27. 'H NMR spectrum (400 MHz) of 3g in CDCls.
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Figure S28. 'H NMR spectrum (400 MHz) of 3h in CDCl;.
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Figure S29. 'H NMR spectrum (400 MHz) of 3i in CDCl;.
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Figure S30. '"H NMR spectrum (400 MHz) of 3j in CDCls.
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Figure S31. 3C NMR spectrum (100 MHz) of 3j in CDCls.
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Figure S32. 'H NMR spectrum (400 MHz) of 3k in CDCl;.
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Figure S33. 3C NMR spectrum (100 MHz) of 3k in CDCl;.
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Figure S34. 'H NMR spectrum (400 MHz) of 31 in CDCl;.
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