A rationally designed bifunctional oxygen electrocatalyst based on Co₂P

nanoparticles for Zn-air battery

Qing Shi^{a,b}, Yapeng Zheng^b, Weijun Li^b, Bin Tang^a, Lin Qin^{*,a}, Weiyou Yang^b, Qiao Liu^{*,b}

Fig. S1 Typical XRD patterns of intermediates: (a) $Co_3(PO_4)_2 \cdot 8H_2O$, (b) $Co_3(PO_4)_2 \cdot 8H_2O/PDA/BC$, (c) $Co_3(PO_4)_2$.

The sample of $Co_3(PO_4)_2 \cdot 8H_2O$ was prepared via the following procedure: First, adding 25 mL of Na₂HPO₄ (0.4 M) solution into 300 mL of DI water, then 10 mL of CoCl₂ solution (24 mg mL⁻¹) was added into the above mixture that kept stirring for 12 h; finally, the solids were collected by centrifuging, washing and freeze-drying.

The sample of $Co_3(PO_4)_2 \cdot 8H_2O/PDA/BC$ is the precursor of Co_2P -NPC/CF, and the sample of $Co_3(PO_4)_2$ is product of pyrolysis $Co_3(PO_4)_2 \cdot 8H_2O$ under Ar atmosphere at 900 °C for 3 h.

Fig. S2 (a) The XPS survey spectrum and (b) high-resolution O 1s spectrum of Co_2P -NPC/CF.

Figure S3 (a) SEM image and (b) EDS spectrum of Co₃(PO₄)₂·8H₂O/PDA/BC.

In order to probe the P source for the doping of resultant carbon, the sample of $Co_3(PO_4)_2 \cdot 8H_2O/PDA/BC$ was investigated by EDS test. If the phosphorus source for the doping of carbon comes from Na₂HPO₄, the Co₃(PO₄)₂ $\cdot 8H_2O/PDA/BC$ sample should contain a large number of adsorbed Na⁺ and HPO₄²⁻ ions. In fact, before the pyrolysis transformation, $Co_3(PO_4)_2 \cdot 8H_2O/PDA/BC$ underwent the repetitive rinsing by deionized water, and the soluble species adsorbed in PDA/BC matrix can be completely removed. EDS spectrum shown in Figure S3b supports this assumption, where the Na⁺ signal is absent, which suggests that the excessive Na₂HPO₄ has been washed away from Co₃(PO₄)₂ $\cdot 8H_2O/PDA/BC$.

To further determine whether there is residual HPO_4^{2-} absorbant, we have also carried out elemental mapping on this sample, as shown in Figure S3c-d, It is found that the elemental distribution of P is not more scattered but almost the same as that of Co, indicating that the main form of existed P atoms lies in $Co_3(PO_4)_2$ rather than

adsorbed HPO_4^{2-} ions on PDA and/or BC. Therefore, it can be concluded that the major contributor of P doping in carbon comes from phosphorus in $Co_3(PO_4)_2$.

Fig. S4 The SEM images of as-fabricated materials: (a) CF, (b) NC/CF, and (c) Co_2P/CF .

Fig. S5 (a) N_2 adsorption-desorption isotherm and (b) pore size distribution of Co₂P-NPC/CF.

Fig. S6 Rate capability of Co₂P-NPC/CF

Catalysts	Eonset (V)	$E_{1/2}$ (V)	Tafel slope (mV dec ⁻¹)
CF	0.66	0.51	102
NC/CF	0.85	0.64	90
Co ₂ P/CF	0.78	0.70	88
Co ₂ P-NPC/CF	0.94	0.85	52
Pt/C	0.95	0.82	80

Table S1 The ORR performance of the as-fabricated materials and commercial Pt/C.

Catalysts	$E_{j=10}$ (V vs. RHE)	$E_{1/2}$ (V vs. RHE)	ΔE (V)	Ref.
Co ₂ P@CoNPG	1.73	0.81	0.92	1
NC@Co-NGC	1.64	0.82	0.82	2
CoNC@GF	1.66	0.87	0.79	3
Co ₂ P/CoN-in- NCNTs	1.65	0.85	0.80	4
CoPNi-N/C	1.63	0.81	0.79	5
CoFe/N-GCT	1.67	0.79	0.88	6
Co-NC@CoP-NC	1.56	0.78	0.78	7
CoNP@NC/NG	1.62	0.78	0.84	8
Co ₂ P@CNF	1.69	0.803	0.887	9
Cu-Co ₂ P@2D-NPC	1.57	0.835	0.735	10
Co ₂ P-NPC/CF	1.59	0.85	0.75	This work

Table S2 Overview of bifunctional activity of recently reported Co-containing carbon electrocatalysts towards ORR and OER in 0.1 M KOH.

Catalysts	<i>E</i> _{j10} (V)	Tafel slope (mV dec ⁻¹)	$R_{\rm ct}(\Omega)$
CF	Not reach	110	183.7
NC/CF	1.69	99	96
Co ₂ P/CF	1.63	93	42.6
Co ₂ P-NPC/CF	1.60	66	17.7
RuO ₂	1.62	83	23.4

Table S3 The OER performance of the as-fabricated materials and commercial RuO₂.

Reference

[1] H. Jiang, C. Li, H. Shen, Y. Liu, W. Li, J. Li, *Electrochim. Acta*, 2017, 231, 344-353.

[2] S. Liu, Z. Wang, S. Zhou, F. Yu, M. Yu, C.Y. Chiang, W. Zhou, J. Zhao, J. Qiu, *Adv. Mater.*, 2017, 29, 201700874- 201700884.

[3] S. Liu, M. Wang, X. Sun, N. Xu, J. Liu, Y. Wang, T. Qian, C. Yan, *Adv. Mater.*, 2018, 30, 201704898-201704906.

[4] Y. Guo, P. Yuan, J. Zhang, H. Xia, F. Cheng, M. Zhou, J. Li, Y. Qiao, S. Mu, Q. Xu, *Adv. Funct. Mater.*, 2018, 28, 1805641.

[5] Z. Li, H. He, H. Cao, S. Sun, W. Diao, D. Gao, P. Lu, S. Zhang, Z. Guo, M. Li, R. Liu, D. Ren, C. Liu, Y. Zhang, Z. Yang, J. Jiang, G. Zhang, *Appl. Catal. B: Environmental*, 2019, 240, 112-121.

[6] X. Liu, L. Wang, P. Yu, C. Tian, F. Sun, J. Ma, W. Li, H. Fu, Angew. Chem. Int. Edit, 2018, 57, 16166-16170.

[7] X. Li, Q. Jiang, S. Dou, L. Deng, J. Huo, S. Wang, J. Mater. Chem. A., 2016, 4, 15836-15840.

[8] X. Zhong, Y. Jiang, X. Chen, L. Wang, G. Zhuang, X. Li, J.-G, *J. Mater. Chem. A*, 2016, 4, 10575-10584.

[9] J. Gao, J. Wang, L. Zhou, X. Cai, D. Zhan, M. Hou, L. Lai, ACS Appl. Mater. Interfaces, 2019, 11, 10364-10372.

[10] L. Diao, T. Yang, B. Chen, B. Zhang, N. Zhao, C. Shi, E. Liu, L. Ma, C. He, J. Mater. Chem. A, 2019, 7, 21232-21243.