Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Role of Lewis and Brønsted acid sites in the resorcinol tert-butylation over heteropolyacid-based catalysts.

Chiara Pezzotta, Vijaykumar S. Marakatti and Eric M. Gaigneaux*

Université catholique de Louvain, Institute of Condensed Matter and Nanosciences, Place Louis Pasteur 1 box L4.01.09, B-1348 Louvain-la-Neuve, Belgium

* Corresponding author: eric.gaigneaux@uclouvain.be

Orcid : Gaigneaux 0000-0003-2239-4306

Section 1. Experimental section

Percentages of Brønsted and Lewis sites calculation

First, the intensities were normalized (A_n) with respect to those of a standard wafer of 20 mg and $2A_n^{5*1}A_e^{-4} + \left(\frac{25}{S_w}\right)^{4*1} \left(\frac{125}{S_w}\right)^{4*1} \left(\frac{125}{$

where A_e is the measured absorbance of the band considered, S_w is the cross section of the wafer (m²), and m_w is the weight of the wafer (mg).

	T	T
Pyridine bonded to Brønsted sites	Pyridine bonded to Lewis sites	References
(cm ⁻¹)	(cm ⁻¹)	
1540	1600-1633	Parry et. Al, Journal of
		Catalysis 2, 371-379 (1963)
1540	1580-1632	Busca, Catalysis Today 41,
		191-206 (1998)
1541	1600-1626	C. Morterra et al. Journal of
		the Chemical Society 75, 271
		(1979)

Table S1. Energy	ionary nangag fan	nuridina	handed to	I awis an	d Duanatad	sites of	ovidos
Table SL. Flequ	lency ranges for	pyriume	Donaeu to	Lewis all	u Di ønsteu	SILES UI	UXIUES.

Then, the duantification of the Brønsted acidity out of the total acidity was done using the formula: $A_{nB} + A_{nL}$

L% = 100 - B%

where A_{nB} is the normalized intensity of the band assigned to pyridine bonded to Brønsted sites and A_{nL} is the normalized intensity of the band assigned to Pyridine bonded to Lewis sites (see Table S1).

 $\frac{A}{c_s} = \frac{A}{\zeta S_{BET}} \frac{A}{\zeta S_{BET}}$

where C_s is the surface density of acid sites (μ mol/m²), S_w is the cross section of the wafer, ζ is the molar extinction coefficient of pyridine onto Lewis and Brønsted sites ($\zeta_L = 1.5 \text{ cm}/\mu$ mol and $\zeta_B = 1.67 \text{ m}/\mu$ mol). The extinction coefficients values were taken from the literature.

Total mole of acid sites calculation

The total moles of acid sites were calculated as follows:

Total moles of acid sites(mol)

= Surface density of strong Bronsted sites
$$\left(\frac{mol}{m^2}\right)$$
 * Catalyst surface (S_{BET}, $\frac{m^2}{g}$) * g of Catalyst used in the reactor (g)

.....

Mass Balance

An internal standard (IS) is a compound that is similar in physical and chemical characteristics to the sample being analysed. It must be inert to the sample and must not react with the sample or any solvent used to dilute or prepare it for the analysis.

The response factor (RF) is defined as the ratio between the response of the detector to a compound (i) and the concentration of that compound being analysed:

response factor $RF_i = \frac{peak \ area_i}{concentration_i}$

Relative response factor (RRF) is defined as the ratio between response factors of the compound and of the internal standard

relative response factor
$$RRF_i = \frac{RF_i}{RF_{is}}$$

The compound concentration can be calculated using the formula:

$$C_{i} = peak \ area \ A\left(\frac{C_{is}}{peak \ area_{is}}\right)\left(\frac{1}{RRF_{i}}\right)$$

Relative response factors:

RRFresorcinol	0.76
RRF4TBR	1.10
RRF46DTBR	3.71
RRFRmTBE	1.00
RRF2TBR	1.00
RRFunknown1	1.00
RRFunknown2	1.00

Section 2.	Catalysts	physico-chemical	characterization
Section 2.	Catalysts	physico-chemical	characterization

Catalyst	Nominal HPW mass	Nominal HPW	Effective HPW
	engaged (g)	mass engaged (%)	WL.70
SiO ₂	0	0	0
SiO ₂ /HPW8	0.505	10	8
SiO ₂ /HPW17	1.022	20	17
SiO ₂ /HPW25	1.752	30	25
SiO ₂ /HPW31	2.725	40	31
SiO ₂ /HPW51	5.530	80	51
TiO ₂	0	0	0
TiO ₂ /HPW9	0.588	10	9
TiO ₂ /HPW17	1.063	20	17
TiO ₂ /HPW21	1.606	30	21
TiO ₂ /HPW29	2.129	40	29
TiO ₂ /HPW41	4.239	80	41
ZrO ₂	0	0	0
ZrO ₂ /HPW7	0.575	10	7
ZrO ₂ /HPW20	1.171	20	20
ZrO ₂ /HPW24	1.745	30	24
ZrO ₂ /HPW29	2.303	40	29

Table S2. HPW wt. % for the SiO_/HPW, TiO_/HPW and ZrO_/HPW catalysts.

Table S3. TiO₂ (Anatase) and ZrO_2 (Monoclinic and tetragonal) crystal size calculated using the Scherrer equation.

Catalyst	Anatase crystallite size (nm)
TiO ₂	53
TiO ₂ /HPW9	39
TiO ₂ /HPW17	39
TiO ₂ /HPW21	43
TiO ₂ /HPW29	35
TiO ₂ /HPW41	26
	Zirconia monoclinic (28.2°)
ZrO ₂	39
$ZrO_{2}/HPW7$	53
$ZrO_{2}/HPW20$	71
$ZrO_{2}/HPW24$	61
$ZrO_{2}/HPW29$	39
	Zirconia tetragonal (30.2°)
ZrO ₂	25
ZrO ₂ /HPW7	34
ZrO ₂ /HPW20	41
ZrO ₂ /HPW24	37
ZrO ₂ /HPW29	41

Catalyst	Surface area, BET	Pore volume, BJH	Pore diameter, BJH
	(m^{2}/g)	(cm^{3}/g)	(nm)
SiO ₂	901	0.31	2.6
SiO ₂ /HPW8	699	0.21	2.5
$SiO_2/HPW17$	635	0.34	2.9
SiO ₂ /HPW25	277	0.21	2.8
SiO ₂ /HPW31	310	0.14	2.4
SiO ₂ /HPW51	85	0.09	3.8
TiO ₂	15	0.05	6.3
TiO ₂ /HPW9	44	0.09	6.6
$TiO_{2}/HPW17$	55	0.12	6.1
$TiO_2/HPW21$	65	0.08	4.3
TiO ₂ /HPW29	67	0.08	3.9
$TiO_2/HPW41$	202	0.08	2.9
ZrO ₂	5	-	-
$ZrO_{2}/HPW7$	6	-	-
$ZrO_{2}/HPW20$	9	-	-
$ZrO_{2}/HPW24$	16	-	-
$ZrO_{2}/HPW29$	1.6	-	-

Table S4. Specific surface area, pore volume and pore diameter of the SiO_/HPW, TiO_/HPW and ZrO_/HPW catalysts

Table S5. Pyridine adsorption bands position and assignments

Wavenumber, cm ⁻¹	Assignment	References
1450	Lewis, L	[10], [5], [11]
1490	Weak Brønsted, WB	
1540	Brønsted, B	
1600	Weak Lewis, WL	
1613	Lewis, L	
1637	Brønsted, B	

Samples	W (total moles)	P (total moles)	W/P (ratio)
SiO ₂	-	-	-
SiO ₂ /HPW8	1.03E-04	8.96E-06	12.14
SiO ₂ /HPW17	3.55E-05	2.36E-06	12.19
SiO ₂ /HPW25	4.10E-05	3.52E-06	12.68
SiO ₂ /HPW31	6.58E-05	4.46E-06	12.40
SiO ₂ /HPW51	1.82E-05	1.19E-06	13.44
TiO ₂	-	-	-
TiO ₂ /HPW9	1.46E-05	1.35E-06	12.26
$TiO_2/HPW17$	2.77E-05	2.91E-06	11.70
$TiO_2/HPW21$	4.24E-05	3.23E-06	12.02
TiO ₂ /HPW29	5.49E-05	5.30E-06	12.30
TiO ₂ /HPW41	1.08E-04	8.51E-06	12.13

 Table S6. Tungsten (W) and phosphorous (P) total moles present in the samples and tungsten to phosphorous ratio calculation

Table S7. Resorcinol conversion obtained using SiO₂/HPW, TiO₂/HPW and ZrO₂/HPW catalysts in the resorcinol alkylation with MTBE.

Catalyst	Resorcinol conversion, %
SiO ₂	0
SiO ₂ /HPW8	8
SiO ₂ /HPW17	13
SiO ₂ /HPW25	20
SiO ₂ /HPW31	16
SiO ₂ /HPW51	21
TiO ₂	0
TiO ₂ /HPW9	15
TiO ₂ /HPW17	10
TiO ₂ /HPW21	21
TiO ₂ /HPW29	30
TiO ₂ /HPW41	22
ZrO ₂	0
ZrO ₂ /HPW7	0
ZrO ₂ /HPW20	0
ZrO ₂ /HPW24	0
ZrO ₂ /HPW29	0

Figure S1. FT-IR spectra of the SiO₂/HPW catalysts (a), of TiO₂/HPW catalysts (b) and of ZrO₂/HPW catalysts (c). A zoom of Figures b and c is given for the sake of clarity.

Figure S2. Raman spectra of the a) HPW, b) WO₃ c) SiO₂/HPW and d) TiO₂/HPW catalysts.

Figure S3. Powder XRD patterns of a) SiO₂/HPW catalysts. b) SiO₂/HPW51 and tungsten oxide (WO₃), c) TiO₂/HPW catalysts and d) ZrO₂/HPW catalysts.

Figure S4. Nitrogen adsorption isotherms for a) SiO_2/HPW catalysts. b) $SiO_2/HPW51$ and tungsten oxide, c) TiO_2/HPW catalysts) ZrO_2/HPW catalysts. The curves are shifted on the y-axis for the sake of clarity.

Figure S5. Comparative IR spectra of adsorbed pyridine onto SiO_2/HPW catalysts (a) and TiO_2/HPW catalysts. Bands intensity variation of pyridine bonded to Lewis and Brønsted acid sites during desorption at different temperatures for the catalyst $SiO_2/HPW17$ (b) and $TiO_2/HPW17$ (d).

Figure S6. Band intensity variation of pyridine bonded to Lewis and Brønsted acid sites during desorption at different temperatures for the catalysts SiO₂/HPW.

Figure S7.Band intensity variation of pyridine bonded to Lewis and Brönsted acid sites during desorption at different temperatures for the catalysts TiO₂/HPW.

Figure S8. Bands intensity variation of pyridine bonded to Lewis (1450 cm⁻¹) and Brønsted (1540 cm⁻¹) acid sites during desorption at different temperatures for the catalysts (a) TiO_2/HPW and (b) SiO_2/HPW .

Figure S9. Resorcinol conversion reported as a function of time for the SiO₂/HPW and TiO₂/HPW catalysts (liquid phase, 60 °C, autogenic pressure).

Figure S10. Reaction selectivity as a function of the B % of acid strong sites (calculated using the band at 1540 cm⁻¹).

Figure S11. Correlation between conversion and weak B sites: in general, the resorcinol conversion was found to increase and then to decrease with the increasing number of strong B sites.