Supporting Information

Oxidative Dehydrogenation of Propane over Transition Metal Sulfides Using Sulfur as an Alternative Oxidant

Allison M. Arinaga, Shanfu Liu, Tobin J. Marks

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States

Table of Contents

Table S1. BET surface areas of precursors and spent catalysts	S2
Table S2. Apparent activation energies of SODHP catalysts	S2
Figure S1. PXRD patterns of Cr ₂ O ₃ and ZrO ₂ precursors and spent SODHP catalysts	S2
Figure S2. XPS Ti2p spectrum of S-TiO ₂	S3
Figure S3. XPS Co2p spectrum of S-Co ₃ O ₄	
Figure S4. XPS S2p spectra of SODHP catalysts	S4
Figure S5. PXRD patterns of fresh and spent MoS ₂ and PdS catalysts	S5
Figure S6. XPS Mo3d and Pd3d spectra of MoS ₂ and PdS fresh and spent catalysts	S6
Figure S7. SODHP selectivity to propylene as a function of temperature	S7
Figure S8. Propane conversion and propylene yield over S-ZrO ₂ , with and without sulfur	S7
Figure S9. Stability of SODHP propylene yield over time on stream	
Figure S10. Propane conversion for SODHP in the absence of catalyst	
Figure S11. Carbon balance for SODHP catalysts	
Figure S12. Arrhenius plots for SODHP catalysts	S10
Table S3. H ₂ S yields over SODHP catalysts	S11
Table S4. Propane conversion and propylene selectivity over S-ZrO ₂ with S ₂ concentration	S11

Catalyst	Oxide Precursor or Fresh Sulfide (m ² /g)	Spent Catalyst (m ² /g)
S-ZrO ₂	36	27
S-TiO ₂	32	19
S-Cr ₂ O ₃	10	7
S-C0 ₃ O ₄	22	-
MoS ₂	15	15

Table S1. BET surface areas of the indicated metal oxide catalyst precursors, fresh metal sulfides, and spent catalysts after SODHP.

Table S2. Apparent experimental activation energies (E_{app}) for the indicated SODHP catalysts, derived from the Arrhenius plots in Figure S12 over the temperature range of 470-550 °C.

Catalyst	E _{app} (kJ/mol)	Linear fit R ²
S-ZrO ₂	95.9±3.6	0.9958
S-TiO ₂	97.3±6.3	0.9875
S-Cr ₂ O ₃	85.9±7.9	0.9754
S-Co ₃ O ₄	134±5.7	0.9945
MoS ₂	85.5±6.1	0.9897
PdS	71.6±6.0	0.9795

Figure S1. PXRD patterns of the catalyst oxide precursor (black) and spent S- M_xO_y catalyst after SODHP catalysis at 550 °C (red) for a) Cr₂O₃ and b) ZrO₂. The spent catalysts produce essentially identical diffraction patterns to the oxide precursors, indicating that bulk sulfidation does not occur for these

catalysts under the present conditions, and that any sulfide phase formed is amorphous and/or present as very thin films.

Figure S2. XPS of the Ti2p region for S-TiO₂. Deconvolution of this region yields a doublet for the $2p_{3/2}$ and $2p_{1/2}$ of TiS₂ (red and pink traces, respectively) and a second $2p_{2/3}$ and $2p_{1/2}$ doublet for TiO₂ (blue and green traces, respectively).

Figure S3. XPS of the Co2p region for S-Co₃O₄. Deconvolution of this region yields doublets corresponding to the $2p_{3/2}$ and $2p_{1/2}$ of Co⁰, Co^{II}, and Co^{III}, as well as Co^{II} satellite features at 786.7 and 802.7 eV.

Figure S4. XPS of the S2p region for a) S-ZrO₂, b) S-TiO₂, c) S-Cr₂O₃, d) S-Co₃O₄, e) MoS₂, and f) PdS. This region contains a spin-orbit doublet corresponding to $S2p_{3/2}$ and $S2p_{1/2}$ (red and blue, respectively). Some catalysts also display a SO_x peak (pink).

Figure S5. PXRD patterns of fresh (black) and spent sulfide catalysts after SODHP catalysis at 550 °C (red) for a) MoS_2 and b) PdS.

Figure S6. XPS spectra of a) the Mo3d region of MoS_2 and b) the Pd3d region of PdS before (top, black) and after (bottom, red) SODHP catalytic reactions. No significant change in oxidation state is observed between the fresh and spent materials.

Figure S7. SODHP propylene selectivity as a function of temperature. The propylene selectivity increases with increasing temperature for all catalysts, indicating that the activation energy for propylene \rightarrow CS₂ is lower than that for propane \rightarrow propylene. Conditions: WHSV = 8.3 min⁻¹, propane/S₂ = 3.7.

Figure S8. Propane conversion and propylene yield at 510 °C over S-ZrO₂ in the presence (red) and absence (blue) of sulfur in the reactant stream. In the absence of sulfur, the conversion and propylene yield are significantly decreased. Conditions: WHSV = 8.3 min⁻¹, propane/S₂ = 3.7 for the reaction with sulfur.

Figure S9. Stability of the SODHP propylene yield as a function of time on stream over a) S-ZrO₂, b) S-TiO₂, c) S-Cr₂O₃, d) S-Co₃O₄, e) MoS₂, and f) PdS at 510 °C. Conditions: WHSV = 8.3 min⁻¹, propane/S₂ = 3.7.

Figure S10. Propane conversion as a function of SODHP temperature without catalyst. The reactor was filled with low surface area quartz sand to act as a blank. The propane conversion remains below 1% within the 400 – 550 °C temperature range, indicating that homogenous gas phase reactions are not significant under SODHP conditions. Conditions: WHSV = 8.3 min⁻¹, propane/S₂ = 3.7.

Figure S11. Carbon balance for the six SODHP catalysts as a function of reaction temperature for 3.5 h on stream at each temperature. Carbon balance was calculated based on the total moles of carbon in and out of the reactor. Conditions: WHSV = 8.3 min^{-1} , propane/S₂ = 3.7.

Figure S12. SODHP Arrhenius plots for a) S-ZrO₂, b) S-TiO₂, c) S-Cr₂O₃, d) S-Co₃O₄, e) MoS₂, and f) PdS, based on the rate of propylene formation. The temperature range is 470 - 550 °C.

Catalyst	H ₂ S
	Yield
	(%)
S-ZrO ₂	11.2
S-TiO ₂	12.8
S-Cr ₂ O ₃	11.1
S-C0 ₃ O ₄	4.7
MoS ₂	8.7
PdS	58.2

Table S3. H_2S yields over the indicated SODHP catalysts at 550 °C, calculated on a sulfur basis. Conditions: WHSV = 8.3 min⁻¹, T = 510°C.

Table S4. Propane conversion and propylene selectivity over S-ZrO₂ versus the propane/S₂ ratio in the feed gas. Conditions: WHSV = 8.3 min⁻¹, T = 510°C.

Propane/S ₂ ratio	Propane	Propylene
	Conversion (%)	Selectivity (%)
3.7	5.1	80.0
3.0	4.8	80.8
2.5	5.3	79.5
2.1	4.7	81.0