Copper and sulphur co-doped titanium oxide nanoparticles with enhanced catalytic and photocatalytic properties

Josefa Ortiz-Bustos^{*a*}, Santiago Gómez-Ruiz^{*a*}, Jaime Mazarío^{*b*}, Marcelo E. Domine^{*b*}, Isabel del Hierro^{*a**}, Yolanda Pérez^{*a*,*c**}

^a Departamento de Biología y Geología, Física y Química Inorgánica. Escuela Superior de Ciencias Experimentales y Tecnología. Universidad Rey Juan Carlos. 28933 Móstoles (Madrid), Spain.

^b Instituto de Tecnología Química (UPV-CSIC), Universidad Politécnica de Valencia, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.

^c Advanced Porous Materials Unit, IMDEA Energy, Av. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain.

E-mail: <u>yolanda.cortes@urjc.es</u>

Supplementary Material

Fig. S1. XRD patterns of TiO₂, 0.4%S-TiO₂ and 0.3%Cu-TiO₂ samples

Fig. S2. XRD peak of (101) reflection for TiO_2 samples

Fig. S3. a) N_2 isotherms of bare TiO₂ and Cu,S co-doped TiO₂ samples b) pore size distribution of bare TiO₂ and Cu,S co-doped TiO₂ samples (c) N_2 isotherms of Cu-TiO₂ and S-TiO₂ samples and (d) pore size distribution of Cu-TiO₂ and S-TiO₂ samples.

Fig. S4. Zoom in FTIR spectra between 900-1300 cm⁻¹.

Fig. S5. C1s XPS signal for bare TiO_2 and co-doped TiO_2 nanoparticles.

Sample	Parameter	Restriction
1.8%Cu-1.4%S-TiO ₂	Peak position (eV)	Ti ^{IV} -O = [529.5, 530]
1.8%Cu-1.4%S-TiO ₂	Peak position (eV)	Ti ^{III} -O = Ti ^{IV} -O(same sample) ± 0.8
1.8%Cu-1.4%S-TiO ₂	Fwhm (eV)	$Ti^{IV}-O = Ti^{IV}-O$ (bare TiO_2)
Both	Fwhm (eV)	Ti-OH, O _v , sulfate, carboxylate, water = 1.1 x Ti ^{IV} -O
1.8%Cu-1.4%S-TiO ₂	Fwhm (eV)	Ti ^{III} -O = Ti ^{IV} -O

(in the second s

Fig. S6. Comparison of XPS $Cu2p_{3/2}$ recorded signal for 1.8%Cu-1.4%S-TiO₂ with (a) 1 scan analysis, (b) 25 scan analysis, (c) 30 scan analysis.

g.
Į

Fig. S7. Photocatalytic degradation of CIP using TiO $_2$ and Cu-S-doped TiO $_2$ samples

Fig. S8. Mineralization and degradation percentages upon 2 h under UV or visible light irradiation.

Fig. S9. Conversion of thioanisole versus reaction time using 1.8%Cu-1.4%S-TiO₂ catalyst.

Fig. S10. FTIR spectra of 1.8% Cu-1.4% S-TiO $_2$ sample before and after oxidation reaction.