Supporting Information

Electrocatalytic Oxygen and Hydrogen Evolutions at Ni$_3$B/Fe$_2$O$_3$ Nanotube Arrays under Visible Light Radiation

Hui Zhao, a Meng Jiang, a Qing Kang, * a Lequan Liu, b Ning Zhang, c Pengcheng Wang, a and Feimeng Zhou a

a Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China

b TJU-NIMS International Collaboration Laboratory, Key Lab of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.

c School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China

*Corresponding author E-mail: ila_kangq@ujn.edu.cn
Figure S1. Nyquist plots and simulated curves of Ni$_3$B/Fe$_2$O$_3$ NTAs in dark and under one-sun radiation. The equivalent circuit is shown with the solution resistance denoted as R_s, the charge transfer resistor as R_{ct} and the constant-phase element as CPE.

Figure S2. OER polarization curves of Ni$_3$B/Fe$_2$O$_3$ NTAs and NiOOH/Fe$_2$O$_3$ NTAs under one-sun radiation.

Figure S3. OER (a) polarization curves and (b) chronoamperograms at 1.23 V at the bare Fe$_2$O$_3$ NTAs and Fe$_2$O$_3$ NTAs modified with Ni$_3$B using different deposition times (5, 10, 20, and 30 min) under repeated on-off radiation sequences. (c) The onset potential plotted vs. deposition time.

Figure S4. IPCE and APCE spectra at 1.23 V of bare Fe$_2$O$_3$ NTAs and Fe$_2$O$_3$ NTAs modified with Ni$_3$B using different deposition times (5, 10, 20, and 30 min).
Figure S5. Field emission-SEM images of the top (a) and cross section (b) of Fe$_2$O$_3$ NTAs.

In Figure S5, the Fe$_2$O$_3$ NTAs have an average inner diameter of 55 nm and a length of 2.05 μm. The vertically oriented and aligned NTAs promote the directional charge transport due to the one-dimensionality of the tubes.1

Figure S6a is a field emission-SEM image of the cross section of a Ni$_3$B/Fe$_2$O$_3$ NTA, revealing that the nanotubes have an average thickness of 2.25 μm. The thickness of the Ni$_3$B layer was determined to be around 0.20 μm from the SEM and EDS elemental mapping analysis (Figure S6b-e).

Figure S7. SEM images of Ni$_3$B/Fe$_2$O$_3$ NTAs before (a) and after OER (b) and HER (c).
A field emission-SEM image of a Ni$_3$B/Fe$_2$O$_3$ NTAs (Figure S7a) shows that the entire surface of the Fe foil was uniformly covered with Fe$_2$O$_3$ NTAs. After OER, the surface of the Ni$_3$B/Fe$_2$O$_3$ NTAs became rougher and contained numerous nanoparticles (Figure S7b). A closer examination reveals that the nanoparticles are 40 ± 10 nm in diameter. Such a morphological change is likely originated from the Ni$_3$B oxidation. After HER in alkaline solution, some small burr-like structures covered the Ni$_3$B/Fe$_2$O$_3$ NTAs (Figure S7c).

Table S1. Calculated values of the solution resistor (R_s), charge transfer resistor (R_{ct}) and constant phase element (CPE) on the fitted equivalent circuit of Ni$_3$B/Fe$_2$O$_3$ NTAs in dark and under one-sun radiation.

<table>
<thead>
<tr>
<th>Condition</th>
<th>R_s (Ω)</th>
<th>R_{ct} (Ω)</th>
<th>CPE (mF/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under irradiation</td>
<td>1.33</td>
<td>8.44</td>
<td>34.93</td>
</tr>
<tr>
<td>In dark</td>
<td>1.36</td>
<td>13.17</td>
<td>33.56</td>
</tr>
</tbody>
</table>

Table S2. Best fitted parameters of time-resolved photoluminescence.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Decay lifetimes (ns)</th>
<th>Fractional contribution</th>
<th>Average lifetimes ($\tau_{\text{Avg.}}$, ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe$_2$O$_3$ NTAs</td>
<td>7.50 55.54 1.33</td>
<td>0.14 0.04 0.82</td>
<td>4.36</td>
</tr>
<tr>
<td>Ni$_3$B/Fe$_2$O$_3$ NTAs</td>
<td>7.79 48.05 1.55</td>
<td>0.14 0.04 0.82</td>
<td>4.28</td>
</tr>
</tbody>
</table>

Reference