Enhanced catalyst selectivity in the direct synthesis of H₂O₂ through Pt incorporation into TiO₂ supported AuPd catalysts.

Xiaoxiao Gong^{[a][b] +}, Richard J. Lewis^{[a][†]}, Song Zhou^{[c][d][e]}, David J. Morgan^[a], Thomas E. Davies^[a], Xi Liu^{[c][f]}, Christopher J. Kiely^[a,g], Baoning Zong^[b] * and Graham J. Hutchings^[a] *

^aCardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom.

^bLaboratory of Catalytic Materials and Chemical Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing, 100083, P.R.China

°SynCat@Beijing, Synfuels China Technology Co. Ltd. Beijing, 101407, P.R.China

^dState Key Laboratory of Coal Convers, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P.R.China

^eSchool of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R.China

^fSchool of Chemistry and Chemical, In-situ Centre for Physical Science, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China

⁹ Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA

⁺These authors contributed equally to this work

*Zongbn.ripp@sinopec.com, Hutch@cardiff.ac.uk

Supplementary Information.

Figure S1. Representative UV-vis spectra from aqueous sol-immobilisation prepared colloidal catalysts prior to immobilisation. The absence of the Au plasmon peak (at approx. 550 nm) in the bimetallic and trimetallic colloids indicative of alloy formation.

Figure S2. Corresponding XPS Pd(3d)/Au(4d) and Au(4f)/Pt(4f) spectra for fresh and used 1%Au₁Pd₁/TiO₂, 1%Au₁Pd₁Pt_{0.01}/TiO₂, and 1%Au₁Pd₁Pt₁/TiO₂ catalysts. Au⁰ = Green, Pd⁰ = Blue, Pd²⁺ = Yellow, Pt⁰ = Peach, Pt²⁺ = Burgundy, Ca²⁺ = Purple, Ti loss of structure = Black.

Figure S3. Representative bright field transmission electron micrographs and corresponding particle size distributions of TiO₂ supported bi- and tri-metallic catalysts prepared by a sol-immobilisation methodology, calcined 400 °C, 3h, static air, ramp rate = 10 °C min⁻¹. (a) 1%Au₁Pd₁/TiO₂, (b) 1%Au₁Pd₁Pt_{0.01}/TiO₂, and (c) 1%Au₁Pd₁Pt₁/TiO₂.

Figure S4 - Complementary bright field (BF)-STEM, high angle annular dark field (HAADF)-STEM and secondary electron (SE)-STEM images of (a, b, c) 1% Au₁Pd₁/TiO₂, (d, e, f) 1% Au₁Pd₁Pt_{0.01}/TiO₂ and (g, h, i) 1% Au₁Pd₁Pt₁/TiO₂ catalyst samples prepared by sol-immobilisation.

20nm

20nm

20nm

Table	S1.	Elemental	composition	of	1%AuPdPt/TiO ₂	catalysts	before	and	after	use	in	the	direct
synthe	esis o	f H ₂ O ₂ , as o	determined by	/ E	DX.								

Catalyst	Au (At%)	Pd (At%)	Pt (At%)
1%Au1Pd1/TiO2	0.19	0.15	-
1%Au1Pd1Pt0.01/TiO2	0.17	0.18	BDL*
1%Au1Pd1Pt1/TiO2	0.17	0.11	0.11

Table S2. Comparison of initial H₂O₂ synthesis rates over various TiO₂ supported AuPdPt catalysts.

Catalyst	Rate of reaction	/ mmol _{H2O2} min ⁻¹
	Use 1	Use 2*
1%Au1Pd1/TiO2	0.034	0.042
1%Au1Pd1Pt0.01/TiO2	0.049	0.056
1%Au1Pd1Pt1/TiO2	0.023	0.027

*Catalyst used for 30 min under standard reaction conditions prior to determination of reaction rate over 0.083 h.

 $\begin{array}{l} \textbf{H_2O_2 direct synthesis reaction conditions:} \\ \textbf{Catalyst (0.01g), H_2O (2.9g), MeOH (5.6g), 5\% H_2 / CO_2 (420 \text{ psi}), 25\% O_2 / CO_2 (160 \text{ psi}), 0.083 \text{ h}, 2 \ ^\circ C 1200 \text{ rpm} \end{array}$

Table S3.	Elemental	surface	composition	of 1%A	JPdPt/TiO₂	2 catalysts	after	use ir	n the	direct	synthe	sis
of H ₂ O ₂ , a	s determine	ed by XF	'S analysis.									

Catalyst		Au : Pt	Pd : Au	Pd ²⁺ : Pd ⁰
1%Au1Pd1/TiO2	Fresh	-	1.92	1.30
	Used	-	2.27	0.00
1%Au1Pd1Pt0.01/TiO2	Fresh	n.d	1.92	0.92
	Used	n.d	2.78	0.00
1%Au1Pd1Pt1/TiO2	Fresh	0.78	1.86	0.63
	Used	0.50	1.78	0.00

 H_2O_2 direct synthesis reaction conditions: Catalyst (0.01g), H₂O (2.9g), MeOH (5.6g), 5% H₂ / CO₂ (420 psi), 25% O₂ / CO₂ (160 psi), 0.5 h, 2 °C 1200 rpm.

n.d: not able to determine

Table S4. Total metal leaching from various TiO_2 supported AuPdPt catalysts during H_2O_2 synthesis reaction, as determined by ICP-MS analysis.

Catalyst	Productivity (Fresh) / mol _{H2O2} kg _{cat} -¹h-¹	Au Leaching / µgL ⁻¹	Pd Leaching / µgL ⁻¹	Pt Leaching / µgL ⁻¹
1%Au1Pd1/TiO2	81	-	0.21	-
1%Au1Pd1Pt0.01/TiO2	112	-	1.56	-
1%Au1Pd1Pt1/TiO2	30	-	-	-

 H_2O_2 direct synthesis reaction conditions: Catalyst (0.01g), H₂O (2.9g), MeOH (5.6g), 5% H₂ / CO₂ (420 psi), 25% O₂ / CO₂ (160 psi), 0.5 h, 2 °C 1200 rpm.

use in th	ne H ₂ O ₂ synthe	esis reaction, a	s determi	ined by an	alysis	of brigh	t field TEN	1 micrograph	S.
(Catalyst		Mean	Particle s	size / r	ראת (Star	ndard devi	ation)	

	Fresh *	Used**	
1%Au1Pd1/TiO2	4.2 (0.98)	4.3 (0.91)	
1%Au1Pd1Pt0.01/TiO2	3.7 (0.55)	4.6 (1.2)	
$1\%Au_1Pd_1Pt_1/TiO_2$	1.8 (0.56)	2.2 (0.84)	

 1%Au1P01Pt1/11O2
 1.8 (0.56)
 2.2 (0.84)

 * Catalysts calcined, 400 °C, 3h, static air. ** Catalysts dried under vacuum (17h, 30 °C) after first use in H2O2 synthesis reaction.

Figure S5. Representative bright field transmission electron micrographs and corresponding particle size distributions of 1% AuPdPt/TiO₂ catalysts after use in the direct synthesis of H₂O₂. Catalysts prepared by a sol-immobilisation methodology, calcined 400 °C, 3h, static air, ramp rate = 10 °C min⁻¹. (a) 1%Au₁Pd₁/TiO₂, (b) 1%Au₁Pd₁Pt_{0.01}/TiO₂ and (c) 1%Au₁Pd₁Pt₁/TiO₂.