Supporting Information

Selective hydrogen production from formic acid decomposition over Mo carbides supported on carbon materials

D.H Carrales-Alvarado^a, A.B. Dongil^{*a}, J.M. Fernández-Morales^b, M. Fernández-García^{a,c}, A.Guerrero-Ruiz^{b,c}, I. Rodríguez-Ramos^{*a,c}

^aInstituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie No. 2, Cantoblanco, 28049 Madrid, Spain

^bDpto. Química Inorgánica y Técnica, Facultad de Ciencias UNED, Senda del Rey 9, 28040 Madrid Spain.

^cUA UNED-ICP(CSIC), Grupo de Diseño y Aplicación de Catalizadores Heterogéneos, Madrid, Spain.

Figure SI1. In situ Mo K-edge XANES spectra obtained during the CH4/H2/He treatment of 10Mo/H400 as a function of temperature.

Figure SI2. Mo K-edge XANES spectra of the used references.

Figure SI3. Correlation plot of the absorption Mo K-edge position and average formal oxidation state for Mo. AHM, MoO_3 , β -Mo₂C and Mo foil references (!) were used to obtain the calibration curve. Interpolation of the absorption Mo K-edge energy of the different species observed during the experiments for 10Mo/H400 (7) and 20Mo/H400 (,).

Figure. SI4. Representative 10Mo/ H_{400} TEM images

Figure SI5. In situ Mo K-edge XANES spectra obtained during the H2/He treatment of 20Mo/H400 as a function of temperature.

Fig. SI6. Raman spectra of the supports a) AC, b) H400 and c) H200 and their I_D/I_G ratio.

Fig. SI7. Conversion and Selectivity to CO_2 vs temperature on formic acid decomposition for $MoO_x/H400$.