## Design of Pt/SAPO-11 bifunctional catalysts with superior metal-

## acid balance constructed via a novel one-step pre-loading strategy

## for enhancing *n*-dodecane hydroisomerization performance

Yanyan Du<sup>a,#</sup>, Heliang Yao<sup>b,#</sup>, Wenjing Hu<sup>a</sup>, Yangchun Tan<sup>a</sup>, Yanhui Xu<sup>a</sup>, Wenjia Fu<sup>a</sup>, Long Yuan<sup>c,\*</sup> and Jiusheng Li<sup>a,\*</sup>

<sup>a</sup> Green Chemical Engineering Technology Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China.

E-mail: lijs@sari.ac.cn

<sup>b</sup> Analysis & Testing Center for Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.

<sup>c</sup> Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130000, P. R. China.

E-mail: yuanlong@jlnu.edu.cn

<sup>#</sup> These authors contributed equally to this work.



Figure S1. XRD patterns of the Pt/SAPO-11-C and Pt/SAPO-11-P catalysts.



**Figure S2** Multi/mono branched isomer of the Pt/SAPO-11-C and Pt/SAPO-11-P catalysts obtained from the GC-MS analysis.



Figure S3. XRD pattern of SAPO-11-T crystallized in the controlled experiment.



**Figure S4** The conversion of n-dodecane versus temperature over the three catalyst.



**Figure S5** The isomer yield of n-dodecane versus temperature over the three catalyst.

And the prepared Pt/SAPO-11-T catalyst demonstrates lower activity than Pt/SAPO-11-C and similar with the Pt/SAPO-11-P catalyst. But it shows much less isomer yield than Pt/SAPO-11-C and Pt/SAPO-11-P catalysts, displayed in Figure S3 and S4. Hence, it can be concluded that SiO<sub>2</sub> pretreated at high temperature results in the decrease of the acidic property and cannot improve the (de)hydrogenation characteristic of Pt nanoparticle.