Supplementary Information

Dehydra-decyclization of Tetrahydrofurans to Diene Monomers over Metal Oxides

Yichen Ji^{a,#}, Ajibola Lawal^{c,#}, Andrew Nyholm^a, Raymond J. Gorte^{a,b}, Omar A. Abdelrahman^{c,b*}

^aDepartment of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, United States

^bCatalysis Center for Energy Innovation, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States

^cDepartment of Chemical Engineering, University of Massachusetts Amherst, 686 N. Pleasant Street, Amherst, MA 01003, United States

*Corresponding Author: <u>mailto:abdel@umass.edu</u> # These authors contributed equally.

Total Supp. Pages: 7 Total Supp. Figures: 6

Total Supp. Tables: 2

Figure SI. XRD patterns of A. ZrO_2 , peaks marked with (*) stand for tetragonal zirconia and peaks marked with (°) stand for monoclinic zirconia **B.** (I) Al_2O_3 (II) TiO_2 (III) Nb_2O_5 (IV) CeO₂.

Figure SII. Temperature Programmed Desorption - Thermogravimetric Analysis of isopropanol on A. TiO₂ B. Nb₂O₅ C. CeO₂ D. t-ZrO₂ E. m-ZrO₂. The TPD peaks correspond to isopropanol (m/e = 45), propene (m/e = 41). Isopropanol dehydration on Al₂O₃ has been previously demonstrated in our lab¹.

Figure SIII. Temperature Programmed Desorption - Thermogravimetric Analysis of THF on A. m-ZrO₂ B. Nb₂O₅ C. Al₂O₃ D. CeO₂. The TPD peaks correspond to THF (m/e = 72,41), butadiene (m/e = 54), butene (m/e = 56), propene (m/e = 41), CO₂ (m/e = 44), H₂ (m/e = 2), oligomer cracking species (m/e = 41, 54, 56, 67).

Figure SIV. Selectivity ratio of 1,3-pentadiene to 1,4-pentadiene on t-ZrO₂ with time on stream at 673 K and P_{2-MTHF} = 10 Torr.

Figure SV. Contact time study of THF Dehydra-decyclization over tetragonal ZrO_2 at 673 K and $P_{THF} = 10$ Torr. A. Selectivity to propene and butene(s) B. Selectivity to butadiene.

Figure SVI. Dehydra-decyclization of THF on monoclinic ZrO₂ at 673 K and P_{THF} = 10 Torr. Regenerated catalyst calcined in air at 673 K.

Temperature (K)	H-ZSM-5	5R WO _x /ZrO ₂	CeO ₂	Nb ₂ O ₅	TiO ₂	Al ₂ O ₃
423	0%					
	0%					
	0%					
473	11%					
	16%					
	16%					
523	33%	38%				
	37%	32%				
573	21%	42%	0%		65%	14%
	19%	41%	0%		63%	11%
623	19%	44%	36%	19%	43%	9%
	19%	48%	40%	19%	45%	9%
673	14%	39%	64%	46%	37%	9%
	14%	38%	65%	41%	41%	9%
723			43%	43%	33%	10%
			44%	38%	37%	11%
773				39%		
				39%		

Table SI. Successive measurements of selectivity to butadiene as a function of temperature on metal oxides. $P_{THF} = 38$ Torr, WHSV = 0.93 g THF g-cat⁻¹ hr⁻¹.

Table SII. Peak desorption temperatures for propene from isopropanol dehydration on metal oxides.

Catalyst	Propene desorption peak temperature (K)		
Al ₂ O ₃	440*		
TiO ₂	500		
Nb ₂ O ₅	520		
CeO_2	550		
t-ZrO ₂	570		
m-ZrO ₂	570		

*Isopropanol dehydration on Al₂O₃ has been previously demonstrated in our lab¹.

References:

1. Srinivasan, S. T.; Narayanan, C. R.; Biaglow, A. I.; Gorte, R. J.; Datye, A. K., The role of sodium and structure on the catalytic behavior of alumina: I. Isopropanol dehydration activity. *Applied Catalysis A: General* **1995**, *132* (2), 271-287.