- 1 Appendix A. Supplementary data
- 2 Facile surface improvement of LaCoO₃ perovskite with high activity and water
- 3 resistance towards toluene oxidation: Ca substitution and citric acid etching
- 4
- 5 Hanlin Chen ^{a, c, d}, Gaoling Wei ^b, Xiaoliang Liang ^{a, c, d}*, Peng Liu ^e*, Yunfei Xi ^f,
- 6 Jianxi Zhu^{a, c, d}
- 7
- 8 ^a CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key
- 9 Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry,
- 10 Chinese Academy of Sciences, Guangzhou 510640, P.R. China;
- 11 ^b Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control
- 12 and Management, Guangdong Institute of Eco-Environmental Science & Technology,
- 13 Guangzhou 510650, P.R. China;
- 14 ° Institutions of Earth Science, University of Chinese Academy of Sciences, Beijing
- 15 100049, P.R. China;
- ¹⁶ ^d University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
- ¹⁷ ^e School of Environment and Energy, South China University of Technology,
 ¹⁸ Guangzhou 510006, China;
- 19 f School of Earth and Atmospheric Sciences, Queensland University of Technology
- 20 (QUT), 2 George Street, Brisbane, QLD 4001, Australia.
- 21
- 22
- 23

24 Text S1. Procedures for characterization

*Corresponding author. Tel: +86 20 85290075, Fax: +86 20 85290075, E-mail:

liangxl@gig.ac.cn (X.L. Liang) & liupeng@scut.edu.cn (P. Liu).

*Corresponding author. Tel: +86 20 85290075, Fax: +86 20 85290075, E-mail:

liangxl@gig.ac.cn (X.L. Liang) & liupeng@scut.edu.cn (P. Liu).

25 The element composition in catalyst or etching supernatant was obtained by

26 inductively coupled plasma atomic emission spectroscopy (ICP-AES).

27 Powder X-ray diffraction patterns (PXRD) were recorded on a Bruker D8 advance

28 diffractometer with Cu Kα radiation.

29 The N₂ adsorption-desorption isotherm was conducted on a Micromeritics ASAP

30 2020 apparatus at 77 K. More than 1 g sample was used in each test to ensure the

31 accuracy of BET specific surface area and pore volume. Before analysis, the sample

32 was degassed under vacuum at 150 °C for 12 h to remove adsorbed species. The BET

33 specific surface area was calculated by multi-point BET method and the pore volume

34 was obtained from the N_2 relative pressure at 0.99.

35 X-ray photoelectron spectroscopy (XPS) was analyzed with a Thermo Scientific K-

36 Alpha instrument equipped with an Al K α radiation.

37 Electron spin resonance (ESR) measurements were operated at a Bruker A300 38 spectrometer. Typically, a 5.0 mg portion of sample powder was placed in a quartz-39 glass sample tube. The settings for the ESR spectrometer were as follows: center field 40 at 3400 G, microwave frequency at 9.85 GHz, power at 19.8 mW, sweep width at 41 2000 G, and mod amplitude at 1G.

42 Transmission electron microscopy (TEM) images were acquired using FEI Talos43 F200S instrument.

44 For all temperature programmed characterization, the flow rate was set at 30 mL min⁻¹.

45 The H₂-TPR, O₂-TPD and CO₂-TPD were carried out on Beijing Builder PCA-1200

46 chemisorption instrument which equipped with a TCD detector, while the H₂O-TPD

47 was recorded on fixed bed apparatus with a mass spectrometry detector.

48 The hydrogen temperature programmed reduction (H₂-TPR) was evaluated in the

49 range of 30-800 °C at a heating rate of 10 °C min⁻¹. The 50.0 mg sample was

50 preheated at 250 °C under Ar for 30 min. The H₂ consumption was estimated by

51 curve-fitting method using standard CuO sample as calibration.

52 The temperature programmed desorption of oxygen (O_2 -TPD) was evaluated in the 53 range of 40-550 °C at a heating rate of 10 °C min⁻¹ under He flow. The 100.0 mg 54 sample was pretreated at 250 °C for 1 h and cooled to 40 °C under O_2 .

For the temperature programmed desorption of CO₂ (CO₂-TPD), 100.0 mg of the sample was first preheated at 400 °C in 20 % O₂/He for 1 h, cooled to 30 °C, and swept by He for another 1 h. Pure CO₂ was introduced into the catalyst bed for 30 min. The He flow was then purged through sample for 1 h to remove physisorbed CO₂. After that, the sample was heated from 30 to 250 °C at a ramp of 10 °C min⁻¹ under He flow.

61 Prior to the temperature programmed desorption of water (H₂O-TPD), the 100.0 mg 62 sample was first pretreated with He at 120 °C, and then purged with H₂O/He until the 63 saturation adsorption of H₂O. After swept by pure He for 1 h at room temperature, the 64 sample was heated to 500 °C to record the mass signal of H₂O.

66 Text S2. Calculation of the apparent activation energy

67 The discrepancy in the catalytic activity of the as-prepared catalysts was further 68 manifested by the apparent activation energy (Ea, kJ mol⁻¹), which was evaluated by 69 Arrhenius plots (Eq. (1)):

70
$$r = A \exp(-Ea/RT) [O_2]^a [toluene]^b$$
 (1)

71 where *r* is reaction rate of toluene (μ mol g⁻¹ s⁻¹); A is pre-exponential factor, R is 72 molar gas constant, 8.314 J mol⁻¹ K⁻¹; and a and b were the reaction orders for O₂ and 73 toluene, respectively.

According to previous studies, ¹ the oxidation of VOCs over metal oxides in the presence of excess oxygen follows first-order and zero-order kinetics with respect to the concentrations (C, µmol g⁻¹) of toluene and oxygen, respectively. Thus, in this study, the catalytic oxidation of toluene by excess oxygen obeys first-order kinetics towards the toluene concentration (C, µmol g⁻¹), (Eq. (2)):

79
$$r = kC = A \exp(-Ea/RT) C$$
(2)

80 where k is the rate constant (s⁻¹), calculated by the reaction rates and toluene 81 conversion.

82 Then, taking the natural log of both sides, Eq. (2) can be transformed to Eq.(3):

$$lnr = - Ea/RT + lnA C$$
(3)

84 The activation energy (E_a) was calculated from the fitted least squares of Eq.(3).

86 Text S3. Calculation of the specific reaction rate constant

The specific reaction rate constant (R_s) of LaCoO₃-based catalysts was defined as the number of toluene molecules converted over catalysts per second per unit area (Eq. (4)).

90
$$R_s = C_{\text{toluene}} \times X_{\text{toluene}} \times V_{\text{gas}} / \mathbf{S}$$
(4)

91 where $C_{toluene}$ is the concentration of toluene in gas mixture (ppm), $X_{toluene}$ is the 92 conversion of toluene (%), V_{gas} is the total flow rate (µmol s⁻¹), and S was the specific 93 surface area (m² g⁻¹).

95 Text S4. Calculations of toluene conversion, CO₂ selectivity, and change in CO₂ 96 selectivity.

97 The toluene conversion (X) rate was obtained from the following Eq. (5):

98
$$X = C^*_{\text{toluene}} - C_{\text{toluene}} \times 100\%$$
(5)

99 where C_{toluene} and C^*_{toluene} are the concentration of toluene in the outlet and inlet gas

100 flow, respectively. The concentration of toluene was analyzed by a gas

101 chromatograph (Agilent 7820A) equipped with an FID detector.

102 The CO₂ selectivity was defined in the following Eq. (6) ²:

103
$$\operatorname{CO}_2 \text{ selectivity} = \operatorname{CO}_2 / [7*(C*_{toluene} - C_{toluene})] \times 100\%$$
 (6)

104 The change in CO₂ selectivity (Δ S) was calculated from the following Eq. (7):

$$\Delta S = S^* - S_{H_{2O}} \tag{7}$$

106 where S^* and $S_{H_{2O}}$ are the CO₂ selectivity before and after the introduction of 5 vol%

107 H₂O in feed gas, respectively.

09	towards toluene oxidation.						
	Catalysts	Surface area/m ² g ⁻	Concentra	GHSV/mL g ⁻¹ h ⁻	Т50	Т90	Ref.
		1	tion/ppm	1	/°C	/°C	
	Co ₃ O ₄	51.7	1000	20000	195	215	3
	spherical Co ₃ O ₄	20.9	1000	20000	249	266	4
	Co ₃ O ₄ -C ^a	83.1	1000	48000	240	248	5
	Co ₃ O ₄ -P ^b	58.8	1000	48000	243	254	5
	Co ₃ O ₄ -N ^c	25.9	1000	48000	250	259	5
	3D-Co ₃ O ₄	84.6	1000	48000	229	238	6
	2D-Co ₃ O ₄	24.9	1000	48000	242	249	6
	1D-Co ₃ O ₄	24.9	1000	48000	245	257	6
	CoMn0.5	249	1200	60000	271	311	7
	CoCoO	55.5	191	60000	186	205	8
	Co30Ce	33	1000	36000	233	260	9
	CoAlO	88.6	2000	60000	307	319	10
	CoCe-P ^d	89	1000	60000	212	230	11
	Montmorillonite	53	1000	30000	284	297	12
	pillared by Co ₃ O ₄						
	Co ₃ O ₄ /3DOM-ESFO ^e	24.1	1000	20000	251	269	13
	Au/Co ₃ O ₄	1.6	146	14690	200	300	14
	Ru/Co ₃ O ₄ -MOF ^f	80	1000	60000	231	238	15
	Pd/Co3AlO	93	800	30000	220	230	16
	Ag-CoAlO	69.5	2000	60000	293	300	10
	Pt-CoAlO	81.1	2000	60000	282	289	10

Table S1. Summary of the catalytic activity of reported cobalt-related catalysts

Pd-CoAlO	51.8	2000	60000	222	226	10	
Ce–Co (CX) ^g	131	266	60000	231	246	17	
Ce–Co (EM) ^h	109	266	60000	237	253	17	
La–Co (CX) ⁱ	92	266	60000	307	350	17	
La–Co (EM) ^j	68	266	60000	258	283	17	
LCO-1 ^k	5.81	1000	60000	206	223	18	
Hollow spherical	20.7	1000	20000	220	237	4	
LaCoO ₃							
$La_{0.6}Sr_{0.4}Co_{0.9}Fe_{0.1}O_3$	21	1000	20000	220	239	19	
La _{0.6} Sr _{0.4} CoO _{2.76}	15	1000	20000	212	220	20	
La _{0.98} Ag _{0.02} CoO ₃	7.5	1000	60000	225	251	21	
LaCoO ₃ /SBA-15	353	1000	20000	284	310	22	
Co ₃ O ₄ /3DOM-LSCO ¹	29.7	1000	20000	210	227	23	
Ag/LCO-450	11.9	1000	60000	239	279	21	
La _{0.9} Ca _{0.1} CoO ₃ -CA	11.2	1000	60000	195	202	This study	

¹¹⁰ ^aCo₃O₄-C, 3D hierarchical cubes-stacked Co₃O₄ microspheres; ^bCo₃O₄-P, 3D hierarchical plates-stacked Co₃O₄ ¹¹¹ flower; ^cCo₃O₄-N, 3D hierarchical needles-stacked Co₃O₄ twospheres with an urchin-like structure. ^dCoCe-P, ¹¹² CoO_x/CeO₂ nanoparticles. ^eCo₃O₄/3DOM-ESFO, 3DOM Co₃O₄/Eu_{0.6}Sr_{0.4}FeO₃. ^fRu/Co₃O₄-MOF, Ru/ Co₃O₄-¹¹³ MOF were prepared through a metal–organic frameworks (MOFs)-templated method. ^{g-j}Ce-Co and La-Co mixed ¹¹⁴ oxides are prepared by evaporation method (EM) and exotemplating method (EX). ^kLCO-1, acetic acid treated ¹¹⁵ LCO for 1 h. ⁱCo₃O₄/3DOM-LSCO, Co₃O₄/3DOM La_{0.6}Sr_{0.4}CoO₃.

Sample	Test conditions	$X(T)^{a}$	Ref.
CoMnO _x	1000 ppm toluene, GHSV = 60,000 mL g ⁻¹ h ⁻¹ , 5 vol.% H ₂ O	90% (250 °C)	24
$Mn_{0.3}Zr_{0.7}O_2$	1000 ppm toluene, GHSV = 60,000 mL g ⁻¹ h ⁻¹ , 3 vol.% H ₂ O	90% (233 °C)	25
$3MnO_x$ -1FeO _y	1000 ppm toluene, GHSV = 240,000 mL g ⁻¹ h ⁻¹ , 10 vol.% H ₂ O	90% (260 °C)	26
MnO _x /Cr ₂ O ₃	1000 ppm toluene, GHSV = 20,000 mL g ⁻¹ h ⁻¹ , 10 vol.% H ₂ O	90% (270 °C)	27
CoO _x /CeO ₂	1000 toluene ppm, GHSV = 60,000 mL g ⁻¹ h ⁻¹ ,5 vol.% H ₂ O	90% (225 °C)	28
Pd-CoAlO	1000 ppm toluene, GHSV = 60,000 mL g ⁻¹ h ⁻¹ , 5 vol.% H ₂ O	90% (240 °C)	10
Pt-AAO ^b	1000 ppm toluene, GHSV = 40,000 mL g ⁻¹ h ⁻¹ , 5.0 vol.% H ₂ O	90% (230 °C)	29
MnO ₂ /LaMnO ₃	1000 toluene ppm, GHSV = 40,000 mL g ⁻¹ h ⁻¹ , 2 vol.% H ₂ O	90% (235 °C)	30
La _{0.9} Ca _{0.1} CoO ₃ -CA	1000 ppm toluene, GHSV = 60,000 mL g ⁻¹ h ⁻¹ , 5 vol.% H ₂ O	90% (205 °C)	This study

117 Table S2. Summary of the reported data on the catalytic oxidation of gaseous toluene

i i a manna su cam.	118	in a l	humid	stream.
---------------------	-----	--------	-------	---------

119 ${}^{a}X(T)$ represents toluene conversion (X) at a specific reaction temperature (T).

120 ^bAAO: Anodic aluminum oxide.

123

Fig. S1. Arrhenius plots for the oxidation of toluene over LaCoO₃-based catalysts.

125 Reaction conditions: [toluene] = 1000 ppm, $[O_2] = 20\%$, catalyst mass = 200.0 mg,

126 total flow rate = 100 mL min^{-1} , and GHSV = $60\ 000 \text{ cm}^3 \text{ g}^{-1} \text{ h}^{-1}$.

Fig. S2. R_s plots of toluene oxidation over LaCoO₃-based catalysts (150, 175, and 200

°C).

Fig. S3. Comparison of the toluene catalytic activities between La_{0.9}Ca_{0.1}CoO₃-CA

and 0.5 wt% Pt/Al₂O₃. Reaction conditions: [toluene] = 1000 ppm, $[O_2] = 20\%$,

- 134 catalyst mass = 100.0 mg, total flow rate = 100 mL min⁻¹, and GHSV = $60\ 000\ \text{cm}^3\ \text{g}^-$
- 135 ¹ h⁻¹. The inset shows the XRD pattern of $0.5 \text{ wt}\% \text{ Pt/Al}_2\text{O}_3$.

137 Fig. S4. The T50 of LaCoO3-based samples with/without the presence of 5 vol% H2O138(a) and the relationship between the γ-H2O and Δ T50 (b).

When 5% H₂O is added into the feed gas, the T50 of all LaCoO₃-based catalysts increases. The temperature difference (Δ T50) of LaCoO₃ is 32 °C before and after the water addition, while it decreases to 8 °C over LaCoO₃-based catalysts subjected to Ca substitution or the citric acid treatment. This illustrates the improvement in the anti-water ability by Ca substitution and the citric acid treatment. Interestingly, the Δ T50 is positively correlated with γ -H₂O, which is generated through the reaction between H₂O and surface active oxygen.

Fig. S5. Toluene conversion and CO₂ selectivity without water (a and c) and with 5
vol% H₂O (b and d) in the feed gas, and the variation of in CO₂ selectivity by H₂O
introduction (e).

Fig. S6. H₂O-TPD profiles of LaCoO₃ (a), LaCoO₃-CA (b), La_{0.9}Ca_{0.1}CoO₃ (c), and

161 **Fig. S7.** The anti-water ability and stability of La_{0.9}Ca_{0.1}CoO₃-CA at 225 °C in the

- 162 presence of water vapor. Reaction conditions: [toluene] = 1000 ppm, [O₂] = 20%,
- 163 $[H_2O] = 5vol\%$, catalyst mass = 100 mg, total flow rate = 100 mL min⁻¹, and GHSV =
- 164 60000 cm³ g⁻¹ h⁻¹.

165 **References**

- M. Alifanti, M. Florea, S. Somacescu and V.I. Parvulescu, *Appl. Catal. B- Environ.*, 2005, **60**, 33-39.
- 168 2. G. M. Bai, H. X. Dai, J. G. Deng, Y. X. Liu, F. Wang, Z. X. Zhao, W. G. Qiu
- and C. T. Au, *Appl. Catal. A-Gen.*, 2013, **450**, 42-49.
- 170 3. J. Wang, A. Yoshida, P.F. Wang, T. Yu, Z.D. Wang, X.G Hao, A. Abudula and
- 171 G. Guan, Appl. Catal. B-Environ., 2020, 217, 118941.
- 172 4. Y. X. Liu, H. X. Dai, J. G. Deng, L. Zhang, Z. X. Zhao, X. W. Li, Y. Wang, S.
- 173 H. Xie, H. G. Yang and G. S. Guo, *Inorg. Chem.*, 2013, **52**, 8665-8676.
- 174 5. Q. M. Ren, S. P. Mo, R. S. Peng, Z. T. Feng, M. Y. Zhang, L. M. Chen, M. L.
- 175 Fu, J. L. Wu and D. Q. Ye, *J. Mater. Chem.*, 2018, **6**, 498-509.
- 176 6. Q. M. Ren, Z. T. Feng, S. P. Mo, C. L. Huang, S. J. Li, W. X. Zhang, L. M.
- 177 Chen, M. L. Fu, J. L. Wu and D. Q. Ye, *Catal. Today*, 2019, **332**, 160-167.
- 178 7. D. A. Aguilera, A. Perez, R. Molina and S. Moreno, Appl. Catal. B-Environ.,
- 179 2011, **104**, 144-150.
- 180 8. S. P. Mo, S. D. Li, J. Q. Li, Y. Z. Deng, S. P. Peng, J. Y. Chen and Y. F. Chen,
- 181 *Nanoscale*, 2016, **8**, 15763-15773.
- 182 9. L. F. Liotta, M. Ousmane, G. Di Carlo, G. Pantaleo, G. Deganello, A. Boreave
- and A. Giroir-Fendler, *Catal. Lett.*, 2009, **127**, 270-276.
- 184 10. S. Zhao, K. Z. Li, S. Jiang and J. H. Li, *Appl. Catal. B-Environ.*, 2016, 181, 236248.
- 186 11. H. J. Wu, L. D. Wang, Z. Y. Shen and J. H. Zhao, J. Mol. Catal. A-Chem., 2011,

187 351, 188-195.

- 188 12. A. Rokicinska, P. Natkanski, B. Dudek, M. Drozdek, L. Litynska-Dobrzynska
 and P. Kustrowski, *Appl. Catal. B-Environ.*, 2016, **195**, 59-68.
- 190 13. K. M. Ji, H. X. Dai, J. G. Deng, X. W. Li, Y. Wang, B. Z. Gao, G. M. Bai and C.
- 191 T. Au, Appl. Catal. A-Gen., 2012, 447, 41-48.
- 192 14. H. J. Wu, L. D. Wang, Z. Y. Shen and J. H. Zhao, *J. Mol. Catal. A-Chem.*, 2011,
 193 351, 188-195.
- 194 15. X. L. Liu, J. Wang, J. L. Zeng, X. Wang and T. Y. Zhu, *RSC Adv.* 2015, 5,
 52066-52071.
- 196 16. P. Li, C. He, J. Cheng, C. Y. Ma, B. J. Dou and Z. P. Hao, *Appl. Catal. B-*197 *Environ*, 2011, **101**, 570-579.
- 198 17. S. A. C. Carabineiro, X. Chen, M. Konsolakis, A. C. Psarras, P. B. Tavares, J. J.
- M. Orfao, M. F. R. Pereira and J. L. Figueiredo, *Catal. Today*, 2015, 244 161171.
- 201 18. Q. L. Yang, D. Wang, C. Z. Wang, X. F. Li, K. Z. Li, Y. Peng and J. H. Li, *Catal.*202 *Sci. Technol.*, 2018, **8**, 3166-3173.
- 203 19. J. G. Deng, H. X. Dai, H. Y. Jiang, L. Zhang, G. Z. Wang, H. He and C. T. Au,
 204 *Environ. Sci. Technol.*, 2010, 44, 2618-2623.
- 205 20. J. G. Deng, L. Zhang, H. X. Dai, H. He and C. T. Au, *Ind. Eng. Chem. Res.*,
 206 2008, 47, 8175-8183.
- 207 21. H. Chen, G. Wei, X. Liang, P. Liu, H. He, Y. Xi and J. Zhu, *Appl. Surf. Sci.*,
 208 2019, **489**, 905-912.

- 209 22. J. G. Deng, L. Zhang, H. X. Dai and C. T. Au, *Appl. Catal. A-Gen.*, 2009, 352,
 210 43-49.
- 211 23. X. W. Li, H. X. Dai, J. G. Deng, Y. X. Liu, Z. X. Zhao, Y. Wang, H. G. Yang
- and C. T. Au, Appl, *Catal, A-Gen.*, 2013, **458**, 11-20.
- 213 24. W. T. Zhao, Y. Y. Zhang, X. W. Wu, Y. Y. Zhan, X. Y. Wang, C. T. Au and L.
- L. Jiang, Catal. Sci. Technol., 2018, 8, 4494-4502.
- 215 25. X. Q. Yang, X. L. Yu, M. Z. Jing, W. Y. Song, J. Liu and M. F. Ge, Acs Appl.
- 216 *Mater. Inter.*, 2019, **11**, 730-739.
- 217 26. J. Chen, X. Chen, W. J. Xu, Z. Xu, J. Z. Chen, H. P. Jia and J. Chen, Chem. Eng.
- 218 *J.*, 2017, **330**, 281-293.
- 219 27. X. Chen, S. C. Cai, E. Q. Yu, J. Chen and H. P. Jia, *Appl. Surf. Sci.*, 2019, 475,
 220 312-324.
- 221 28. F. Y. Hu, Y. Peng, J. J. Chen, S. Liu, H. Song and J. H. Li, *Appl. Catal. B- Environ.*, 2019, **240**, 329-336.
- 223 29. Q. Zhang, H. J. Luan, T. Li, Y. Q. Wu and Y. H. Ni, *Appl. Surf. Sci.*, 2016, 360,
 224 1066-1074.
- 225 30. B. Li, Q. L. Yang, Y. Peng, J. J. Chen, L. Deng, D. Wang, X. W. Hong and J. H.
- Li, Chem. Eng. J., 2019, **366**, 92-99.
- 227