Supplementary Information

The direct synthesis of hydrogen peroxide using a combination of a hydrophobic solvent and water.

Adeeba Akram^[a], Greg Shaw^[a], Richard J. Lewis^[a], Marco Piccinini^[a], David J. Morgan^[a], Thomas E. Davies^[a], Simon J. Freakley^[b], Jennifer K. Edwards^[a], Jacob A. Moulijn^[a], Graham. J. Hutchings^[a] *

^aCardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom.

^b Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.

* Corresponding author. E-mail: hutch@cardiff.ac.uk

Table S.1. Table S.1. Nominal and actual total metal loading of supported AuPd catalysts as determined by ICP-MS.

Actual Au loading / %	Actual Pd loading / %
2.10	2.15
2.46	2.37
2.34	2.50
2.22	2.50
	Actual Au loading / % 2.10 2.46 2.34 2.22

All catalysts calcined (3 h, 400 °C, 20 °Cmin⁻¹, static air).

Figure S.1. X-ray diffractograms of AuPd catalysts supported on A)C(G60), B), SiO2 C) TiO2 and D) CeO2 prepared by wet co-impregnation (3 h, 400 °C, static air, ramp rate = 20 °C min⁻¹). Au reflections (dashed lines) Pd reflections (solid lines).

Table S.2. Summary surface atomic concentrations of Au and Pd present in supported AuPd catalysts, as derived from XPS using Au (4f) and Pd (3d) features.

Pd: Au*
46.7
12.2
24.9
0.9

All catalysts calcined (3 h, 400 °C, 20 °Cmin⁻¹, static air).

* Expected value for homogeneous alloy based on Au: Pd = 1: 1 by weight = 1.9.

Figure S.2. XPS spectra of Au (4f) and Pd (3d) regions of as prepared A) 2.5%Au-2.5%Pd/ B) 2.5%Au-2.5%Pd/ C) 2.5%Au-2.5%Pd/ and D) 2.5%Au-2.5%Pd/ catalysts.

Table S.3. Catalytic activity towards H_2O_2 synthesis and degradation using a water/methanol solvent system at sub-ambient temperature.

Catalyst	Productivity / mol _{H2O2} kg _{cat} - ¹ h ^{-1[a]}	Degradation / % ^[b]	Reference
2.5%Au-2.5%Pd/TiO ₂	64	12	1,2
2.5%Au-2.5%Pd/SiO ₂	74	23	3,4
2.5%Au-2.5%Pd/ CeO ₂	68	9	5,6
2.5%Au-2.5%Pd/C (G60)	110	5	7, 8

[a] H₂O₂ direct synthesis reaction conditions: Catalyst (0.01 g), H₂O (2.9 g), MeOH (5.6 g), 5% H₂/CO₂ (420 psi), 25% O₂/CO₂ (160 psi), 0.5 h, 2° C, 1200 rpm.

[b] H₂O₂ degradation reaction conditions: Catalyst (0.01 g), H₂O₂ (50 wt.% 0.68 g) H₂O (2.22 g), MeOH (5.6 g), 5% H₂/CO₂ (420 psi), 0.5 h, 2°C, 1200 rpm.

Note: For extensive comparison of catalytic performance as well as the ability of the catalytic support to alter nanoparticle composition and morphology we direct the reader to references 2 and 8.

Table S.4. Catalytic activity towards H_2O_2 synthesis and degradation using a water/decan-1-ol solvent system at ambient temperature.

Catalyst	Productivity / mol _{H2O2} kg _{cat} -1h ⁻ 1[a]	Degradation / % ^[b]
2.5%Au-2.5%Pd/TiO ₂	24	94
2.5%Au-2.5%Pd/SiO ₂	19	99
2.5%Au-2.5%Pd/ CeO ₂	13	89
2.5%Au-2.5%Pd/C (G60)	8	37

[a] H₂O₂ direct synthesis reaction conditions: Catalyst (0.01 g), H₂O (2.9 g), MeOH (5.6 g), 5% H₂/CO₂ (420 psi), 25% O₂/CO₂ (160 psi), 0.5 h, 2° C, 1200 rpm.

[b] H₂O₂ degradation reaction conditions: Catalyst (0.01 g), H₂O₂ (50 wt.% 0.68 g) H₂O (2.22 g), MeOH (5.6 g), 5% H₂/CO₂ (420 psi), 0.5 h, 2°C, 1200 rpm.

Solvent (8.5 g)	Observed pressure drop /psi*	
Methanol	60	
Hexan-1-ol	78	
Octan-1-ol	87	
Decan-1-ol	100	

 Table S.5. Observed pressure drop after the addition of reagent gases to different alcohol solvents.

* Initial pressure 580 psi - 5% H₂/CO₂ (420 psi), 25% O₂/CO₂ (160 psi).

Figure S.3. NMR spectra showing the stability of the decan-1-ol during H_2O_2 synthesis (A) and a blank reaction (B) against a reference Decan-1-ol spectra (C)

References.

- 1. J. K. Edwards, B. Solsona, P. Landon, A. Carley, A. Herzing, C. Kiely and G. Hutchings, *J. Catal.*, 2005, **236**, 69-79.
- 2. J. K. Edwards, A. Thomas, B. E. Solsona, P. Landon, A. F. Carley and G. J. Hutchings, *Catal. Today*, 2007, **122**, 397-402.
- 3. R. J. Lewis, K. Ueura, Y. Fukuta, S. J. Freakley, L. Kang, R. Wang, Q. He, J. K. Edwards, D. J. Morgan, Y. Yamamoto and G. J. Hutchings, *ChemCatChem*, 2019, **11**, 1673-1680.
- 4. J. K. Edwards, S. F. Parker, J. C. Pritchard, M. Piccinini, S. J. Freakley, Q. He, A. F. Carley, C. J. Kiely and G. J. Hutchings, *Catal. Sci. Technol.*, 2013, 3, 812-818
- 5. E. N. Ntainjua, M. Piccinini, J. C. Pritchard, J. K. Edwards, A. F. Carley, C. J. Kiely and G. J. Hutchings, *Catal. Today*, 2011, **178**, 47-50.
- 6. J. K. Edwards, J. Pritchard, L. Lu, M. Piccinini, G. Shaw, A. F. Carley, D. J. Morgan, C. J. Kiely and G. J. Hutchings, Angew. Chem Int. Ed., 2014, 53, 2381-2384
- 7. J. K. Edwards, B. Solsona, E. N. N, A. F. Carley, A. A. Herzing, C. J. Kiely and G. J. Hutchings, *Science*, 2009, **323**, 1037-1041.
- 8. E. N. Ntainjua, J. K. Edwards, A. F. Carley, J. A. Lopez-Sanchez, J. A. Moulijn, A. A. Herzing, C. J. Kiely and G. J. Hutchings, *Green Chem.*, 2008, **10**, 1162.