Supporting Information

Investigation of the stability of NiFe-(Oxy)hydroxide anodes in alkaline water electrolysis under industrially relevant conditions

Marco Etzi Coller Pascuzzi, Alex J.W. Man, Andrey Goryachev,[§] Jan P. Hofmann^{\$,*}, and Emiel J. M. Hensen^{*}

Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

[§] Present address: KAUST Catalysis Center, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.

^{\$}Present address: Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287 Darmstadt, Germany.

Corresponding authors:

e.j.m.hensen@tue.nl (E. J. M. Hensen)

j.p.hofmann@tue.nl (J. P. Hofmann)

Element	Atomic	Weight
Symbol	Conc.	Conc.
Au	58.9	91.6
0	18.5	2.3
Si	18.3	4.1
Ni	3.0	1.4
Fe	1.3	0.6

Figure S1. EDX analysis of as-deposited NiFeO_xH_y sample.

Figure S2. XRD patterns of fresh supported NiFeO_xH_y sample and bare Au-coated Si substrate.

Figure S3. Chronopotentiograms of NiFeO_xH_y conducted at j = 100 mA cm⁻² at different temperatures and KOH concentrations.

Figure S4. XPS analysis of fresh NiFeO_xH_y and after 1 hour of immersion in 10 M KOH at 75 $^{\circ}$ C without anodic polarization.

Figure S5. Ni 2p spectra of NiFeO_xH_y samples after the stability tests performed under different conditions.

Figure S6. Fe 2p spectra of NiFeO_xH_y samples after the stability tests performed under different conditions. For the sample tested at 75 °C in 10 M KOH, no peak fitting was performed, because of the strong intensity of the Ni Auger LMM feature overlapping with the weak Fe $2p_{3/2}$ peak for this low Fe-containing sample.

Figure S7. O 1s spectra of NiFeO_xH_y samples after the stability tests performed under different conditions.

Figure S8. Low-binding energy region of XPS survey scan of NiFeO_xH_y before and after anodic polarization at 75 °C in 10 M KOH, j = 100 mA cm⁻².

Figure S9. SEM image of the bare substrate, prior to film deposition. Scale bar is equal to 500 nm.

Figure S10. Chronopotentiograms of NiO_xH_y (red) and NiFeO_xH_y (black) conducted at j = 100 mA cm⁻², 75 °C, 5 M KOH.

Figure S11. iR-corrected Tafel plots of NiO_xH_y and NiFeO_xH_y before and after anodic polarization at 75 °C in 5 M KOH, j = 100 mA cm⁻². Measurements were carried out in 1 M KOH at 25 °C; the dots represent the experimental data, the lines represent the fittings.

Figure S12. SEM images of NiO_xH_y a) before and b) after anodic polarization at 75 °C in 5 M KOH, $j = 100 \text{ mA cm}^{-2}$, 1 h. Scale bars are equal to 500 nm.