SUPPORTING INFORMATION

Al₂O₃-Supported W-V-O bronzes catalysts for oxidative dehydrogenation of ethane

S. Benomar^{a,b}, A. Chieregato^{a,c}, A. Masso^a, M.D. Soriano^a, J. A. Vidal-Moya^a, T. Blasco^a, R. Issaadi^b, J. M. Lopez Nieto^{a,*}

 ^{a)} Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, España
 ^{b)} Hydrogen Energy Applications Laboratory, Faculty of Technology, University of Blida 1, Algeria.

^{c)} Current address: Total Research Center-Qatar (TRCQ), Qatar Science & Tecnology Park, Al Gharrafa, Doha, P.O. Box 9803, Qatar.

*Corresponding author: jmlopez@itq.upv.es

CONTENTS:

Catalyst Preparation

Table S1. Characteristics of catalysts used as references.

- Fig. S1. XRD pattern of VOSO₄ + APT, heat-treated under nitrogen at 600 °C, using different heating rates and hold times.
- Fig. S2. XRD pattern of Al₂O₃-supported W-V-O oxide bronzes.
- Fig. S3. XRD patterns of reference samples.
- Fig. S4. Raman spectra of reference samples.
- Fig. S5. Diffuse reflectance UV-vis spectra of reference samples.
- Fig. S6. EPR spectra of references samples.
- Fig. S7. Simulation of EPR spectrum of a W-V-O oxide bronze sample prepared hydrothermally.
- Fig. S8. W 4f core-level XPS spectra of W,V-containing catalysts.
- Fig. S9. XRD (A) and Raman (B) spectra of fresh (a) and used (b) S-I-2 catalyst. Used catalysts catalyst after 70 h time on stream (see Fig. 9).
- Table S2. Catalytic performance of catalysts during the oxidative dehydrogenation of ethane at 500°C.

References

Catalyst Preparation

Reference materials were synthesized and used for characterization purposes and catalytic tests:

a) V-containing h-WO₃ bronze with HTB structure were prepared by hydrothermal synthesis according to the preparation procedure described previously [ref. 1]. Finally, the sample was heat-treated at 600°C/2h in N₂ atmosphere. This sample was named as **WV-HT**.

b) Vanadium oxide supported on alumina. This is a benchmark catalyst used for the oxidative dehydrogenation of alkanes [ref. 2]. This material was prepared by the wet-impregnation method of γ -Al₂O₃ using an aqueous solution of ammonium metavanadate. The mixture was rotaevaporated until complete dryness and the material was dried at 110°C overnight. Finally, the sample was calcined at 600°C for 6 h. The sample is named as **VOx/AL**.

c) Vanadium oxide supported on tungsten hexagonal bronze supported on alumina. It was prepared by the same method than (VOx/AL), i.e. impregnation with an aqueous ammonium metavanadate solution, but using an alumina supported tungsten hexagonal bronze (which was previously prepared by using reflux) rather than pure alumina. This sample was finally heat-treated as 600°C in N₂. This sample was named as V/W/AL.
d) Al₂O₃-supported V-W-O oxide catalysts was prepared by impregnation of alumina

with an aqueous solution of ammonium metavanadate and ammonium tungstate. The catalysts was finally heat-treated as 600°C in N₂. This sample is named as **VW/AL**. In all cases, the V/W atomic ratio was ca. 0.2.

Catalyst	Synthesis Procedure	Sbet	V/W	V/Al
		(m ² g ⁻¹)	(XPS)	(XPS)
WV-HT	Hydrothermal synthesis	19	0.090	0
VOx/AL	Impregnation of γ -Al ₂ O ₃ with	186	0	0.015
	aqueous solution of ammonium			
	metavanadate			
V/W/AL	Impregnation of WOx/ γ -Al ₂ O ₃ ^(a) with	130	0.23	0.023
	aqueous solution of ammonium			
	metavanadate			
VW/AL	Impregnation of γ -Al ₂ O ₃ with	132	0.20	0.015
	aqueous solution of ammonium			
	metavanadate and ammonium			
	tungstate			

Table S1. Characteristics of catalysts used as references

a) The sample WOx/ γ -Al₂O₃ was prepared by impregnation of γ -Al₂O₃ with an aqueous solution of ammonium tungstate and ammonium oxalate and heat-treated at 450°C for 2h in N₂.

Fig. S1. XRD pattern of VOSO₄ + APT, heat-treated under nitrogen at 600 °C, using different heating rates and hold times: a) 3°C min⁻¹, hold for 3 h; b) 10°C min⁻¹, hold for 3 hours; c) 100°C min⁻¹, hold for 1 hours; d) 100°C min⁻¹, hold for 2 hours; e) 100°C min⁻¹, hold for 3 hours; f) 100°C min⁻¹, hold for 5 hours. Symbols: HTB structure (•); monoclinic WO₃ (Δ).

Fig. S2. XRD pattern of Al₂O₃-supported W-V-O oxide bronzes. Catalysts: a) S-I-1; b)
S-I-2; c) S-I-3. Details reported in Table 1. Symbols: HTB structure (•); monoclinic WO₃ (Δ); γ-Al₂O₃ (■).

Fig. S3. XRD patterns of reference samples: a) unsupported W-V-O bronze prepared hydrothermally (sample WV-HT); b) γ -Al₂O₃-supported vanadium oxide (sample VOx/AL); c) vanadium oxide supported on WO₃/Al₂O₃ (sample V/W/AL); d) Al₂O₃-supported W-V-O (sample VW/AL). Symbols: HTB structure (•); monoclinic WO₃ (Δ); γ -Al₂O₃ (**n**).

Fig. S4. Raman spectra of reference samples: a) unsupported W-V-O bronze prepared hydrothermally (sample WV-HT); b) γ -Al₂O₃-supported vanadium oxide (sample VOx/AL); c) vanadium oxide supported on WO₃/Al₂O₃ (sample V/W/AL); d) Al₂O₃-supported W-V-O (sample VW/AL).

Fig. S5. Diffuse reflectance UV-vis spectra of reference samples: a) unsupported W-V-O bronze prepared hydrothermally (sample WV-HT); b) γ -Al₂O₃-supported vanadium oxide (sample VOx/AL); c) vanadium oxide supported on WO₃/Al₂O₃ (sample V/W/AL); d) Al₂O₃-supported W-V-O (sample VW/AL).

Fig. S6. EPR spectra of references samples: a) unsupported W-V-O bronze prepared hydrothermally (sample WV-HT); b) γ -Al₂O₃-supported vanadium oxide (sample VOx/AL); c) vanadium oxide supported on WO_x/Al₂O₃ (sample V/W/AL); d) Al₂O₃-supported W-V-O (sample V-W/AL).

Fig. S7. Simulation of EPR spectrum of a W-V-O oxide bronze sample prepared hydrothermally: **WV-HT**. Original (left) and deconvoluted (right) spectra. The characteristics of each deconvoluted spectrum is also included (right).

Fig. S8. W 4f core-level XPS spectra of W,V-containing catalysts: a) S-I-2; b) U-I-2; c) WV-HT; d) V/W/AL.

Fig. S9. XRD (A) and Raman (B) spectra of fresh (a) and used (b) **S-I-2** catalyst. Used catalysts catalyst after 70 h time on stream (see Fig. 9).

Sample	V-content	Temp.	Conv.	Selectivity	Yield	Reaction rate of	STY- C ₂ H ₄	C ₂ H ₄ formation per
	(wt%)	(°C)	(%)	C ₂ H ₄ (%)	$C_{2}H_{4}$ (%)	C ₂ H ₆ conversion ⁽⁴⁾	(5)	weight of vanadium
			(3)					(6)
S-I-1	0.67	502	13.5	79.6	10.7	13.4	37.5	5.60
S-I-2	2.5	509	24.1	71.4	17.2	21.5	60.2	2.41
S-I-3	4.9	517	45.4	44.9	20.4	25.5	71.4	1.45
U-I-2	9.0	502	1.3	65.9	0.9	1.1	3.1	0.03
S-III-2	2.5	502	15.5	68.0	10.5	13.1	36.7	1.47
WV-HT	9.0	500	7.4	49.8	3.7	4.6	12.9	0.14
VW/AL	3.1	500	22.3	61.8	13.8	17.2	48.2	1.61
V/W/AL	3.1	500	38.0	42.0	15.9	20.0	56.0	1.80
VOx/AL	3.1	506	25.3 (2)	49.6	12.5	7.8	21.8	0.70

Table S2. Catalytic performance of catalysts during the oxidative dehydrogenation at 500°C.⁽¹⁾

;

1) Ethane/oxygen/nitrogen molar ratio of 4/8/88 and a contact time, W/F, of 80 g_{cat} h $(mol_{C2H6})^{-1}$; Temperature= 500°C; 2) At a contact time, W/F, of 160 g_{cat} h $(mol_{C2H6})^{-1}$; 3) Conversion of ethane (%); 4) Reaction rate of C₂H₆ conversion in 10⁴ mol_{C2H6} g_{cat}^{-1} h⁻¹; 5) Space-time yield, STY_{C2H4}, in g_{C2H4} kg_{cat}⁻¹ h⁻¹; 6) C₂H₄ formation per amount of vanadium, in g_{C2H4} gv⁻¹ h⁻¹.

References

- a) M. D. Soriano, P. Concepción, J. M. López Nieto, F. Cavani, S. Guidetti, and C. Trevisanut, Green Chem. 2011, 13, 2954–2962; b) D. Delgado, A. Chieregato, M. D. Soriano, E. Rodriguez-Aguado, L. Ruiz-Rodriguez, E. Rodriguez-Castellon, and J. M. Lopez Nieto, *Eur. J. Inorg. Chem.* 2018, 1204– 1211
 - T. Blasco, A. Galli, J.M. López Nieto, and F. Trifiró, J. Catal. 1997, 169, 203-211.
 - B. Solsona, A. Dejoz, T. Garcia, P. Concepcion, J.M. Lopez Nieto, M.I. Vazquez, and M.T. Navarro, *Catal. Today* 2006, 117, 228-233.