Supporting Information

Combined two steps transformations of (±)-citronellal to menthol over extrudated Ru-MCM-41 catalysts in a continuous reactor

Zuzana Vajglová¹, Narendra Kumar¹, Markus Peurla², Päivi Mäki-Arvela¹, Kari Eränen¹,Dmitry Yu. Murzin^{1*}

¹ Åbo Akademi University, Johan Gadolin Process Chemistry Centre, Biskopsgatan 8, Turku/Åbo, Finland, 20500

² University of Turku, Turku, Finland, 20500

*<u>dmurzin@abo.fi</u>, corresponding author

EXPERIMENTAL

Gel preparation

		-
	Purity	Supplier
Fumed Silica	Scintran	BDH Laboratory
Sodium silicate solution	Water glass	Merck
Cetyltrimethylammonium	95%	Sigma-Aldrich
Bromide		
Aluminium Isopropoxide	98+%	Sigma-Aldrich
Tetramethylammonium Silicate	15-20% solution in water	Sigma-Aldrich

Table S1. Chemicals for gel solution preparation.

In order to prepare Na-MCM-41 mesoporous material, at first three different solution were prepared: Solution A: 16.6 g of fumed silica were dissolved in 102.8 g of distilled water and stirred for 15 min; Solution B: 22.8 g of sodium silicate solution were dissolved in 46.8 g of tetramethylammonium silicate and stirred for 25 min; Solution C: 51.8 g of cetyltrimethylammonium bromide were dissolved in 348 g of distilled water and stirred for 30 min. First, solution B was added to A and mixed; second the solution C was added to the previous mixture and finally 4 g of aluminium isopropoxide were added followed by stirring for 30 min.

Table S2. pH measurement of the gel prepared.

	Α	В	С	A+B	A+B+C	A+B+C+	A+B+C+
						$C_9H_{21}O_3Al$	C ₉ H ₂₁ O ₃ Al*
Gel solution	4.5	11.6	7.8	11.3	11.4	11.5	10.5

*after ultrasound treatment and synthesis in the oven.

Chemicals

Table S3. Reactants and solvent for catalytic tests.

	Purity	Supplier	Notes
Cyclohexane	≥99.9%	Alfa Aesar	
(+)-Isopulegol	≥ 99.9% (GC)	Fluka	
β -Citronellol	≥95.0%	Sigma-Aldrich	Racemic mixture
(±)-Citronellal	≥95.0% (GC)	Sigma-Aldrich	Racemic mixture

Definitions

Conversion of the reactant was calculated by using the following equation;¹⁻³

$$X(\%) = \frac{C_0 - C_i}{C_0} * 100 \tag{1}$$

where X is conversion of the reactant at time t, %, C_0 denotes the initial molar concentration of the reactant, mol/l, C_i - molar concentration of the reactant at time t, mol/l. Yield was calculated according to:

Cp

$$Y_p(\%) = \frac{1}{C_0} * 100$$
(2)
where Y is yield to product p C is malar concentrat

where Y_p is yield to product *p*, C_p is molar concentration of the product *p*, mol/l. C_0 denotes the initial molar concentration of the reactant, mol/l.

The liquid phase mass balance closure is defined as a sum of the concentration of citronellal at a certain time and the concentrations of products visible in the GC chromatogram divided by the initial concentration of citronellal, denoted as MB:^{1,2}

$$MB(\%) = \frac{\Sigma m_i}{\Sigma m_0} * 100 \tag{3}$$

 $\sum m_i$ = sum of mass concentration of all components at different sampling times

 $\sum m_0 = \text{sum of mass concentration of all components at time} = 0$

The reaction rates (r) and turnover frequency (TOF) are calculated as follows:

$$r_{extrudates} = \frac{\Delta n}{m_{cat}} \left[\frac{mol}{s.g} \right]$$
(4)

$$r_{powder \ catalyst} = \frac{\Delta n}{\Delta t.m_{cat}} \left[\frac{mol}{s.g} \right]$$
(5)

$$TOF_{extrudates} = \frac{\dot{n}_{in} - \dot{n}_{out}}{n_{metal}} \left[\frac{1}{s} \right]$$
(6)

$$TOF_{powder \ catalyst} = \frac{\Delta n \cdot V_l}{\Delta t.m_{metal}} \left[\frac{1}{s} \right]$$
(7)

where _{extrudates} is obtained over extrudates in trickle-bed reactor and _{powder catalyst} is obtained over powder catalyst in a batch reactor, Δn denotes the change in molar flow rate of the feed at time zero and time t in a trickle bed reactor, $\Delta n/\Delta t$ reacted moles per time interval Δt in a batch reactor, m_{cat} is catalyst mass, V₁ is liquid volume and n_{metal} is moles of metal.¹⁻³

RESULTS AND DISCUSSION

Catalyst characterization results

Figure S1. A schematic picture of the catalysts employed in this study, showing different distances between the metal and acid sites: a) A - Ru/(H-MCM-41+Bindizl-50/80), post synthesis; b) C - (Ru/Bindizl-50/80)+H-MCM-41, in-situ synthesis; c) B - Ru/(H-MCM-41+Bindizl-50/80), in-situ synthesis; d) D - (Ru/H-MCM-41)+Bindizl-50/80, in-situ synthesis. Legend: H-MCM-41 (grey circle), Bindizl-50/80 (white circle), Ru (black dots).⁴

Figure S2. TEM images: a) A - Ru/(H-MCM-41+Bindizl-50/80), post synthesis; b) B - Ru/(H-MCM-41+Bindizl-50/80), in-situ synthesis; c) C - (Ru/Bindizl-50/80)+H-MCM-41, in-situ synthesis; d) D - (Ru/H-MCM-41)+Bindizl-50/80, in-situ synthesis.

Figure S3. Ru particle size distribution: a) A - Ru/(H-MCM-41+Bindizl-50/80), post synthesis; b) B - Ru/(H-MCM-41+Bindizl-50/80), in-situ synthesis; c) C - (Ru/Bindizl-50/80)+H-MCM-41, in-situ synthesis; d) D - (Ru/H-MCM-41)+Bindizl-50/80, in-situ synthesis.

Figure S4. SEM images: a) A - Ru/(H-MCM-41+Bindizl-50/80), post synthesis; b) B - Ru/(H-MCM-41+Bindizl-50/80), in-situ synthesis; c) C - (Ru/Bindizl-50/80)+H-MCM-41, in-situ synthesis; d) D - (Ru/H-MCM-41)+Bindizl-50/80, in-situ synthesis.

Table S4. Brønsted and Lewis acid sites. Legend: P - H-MCM-41, powder catalyst; $P^* - 70\%$ H-MCM-41 + 30% Bindizl-50/80; A - Ru/(H-MCM-41+Bindizl-50/80), post synthesis; B - Ru/(H-MCM-41+Bindizl-50/80), in-situ synthesis; C - (Ru/Bindizl-50/80)+H-MCM-41, in-situ synthesis; D - (Ru/H-MCM-41)+Bindizl-50/80, in-situ synthesis.

Tyme	Bre	ønsted acidi	ty, μmol/g	Ş	L	ewis acidity	Total acidity		
Гуре	weak	medium	strong	Σ	weak	medium	strong	Σ	µmol/g
Р	41	19	24	84	20	14	21	56	140
P *	48	12	7	67	25	16	9	50	118
А	36	1	0	37	22	2	0	24	60
В	31	0	0	31	21	0	0	21	51

С	32	3	0	35	23	2	0	25	60
D	29	0	0	29	22	0	0	22	52

Catalytic results

Figure S5. Menthol synthesis from isopulegol over B - Ru/(H-MCM-41+Bindizl-50/80), in-situ synthesis extrudates: a) conversion and mass balance, b) total yield, c) yield of menthols, d) yield of p-menthane on time-on-stream.

Table S5. Reaction rate (r) and turnover frequency (TOF) in menthol synthesis.

Reactant	Catalyst	r ⁰	TOF ⁰	X	r	TOF
-	-	mol/s/g	1/s	%	mol/s/g	1/s
Isopulegol	В	5.66.10-7	0.0049	86	4.98·10 ⁻⁷	0.0043
Citronellol	В	4.91·10 ⁻⁷	0.0043	96	4.72·10 ⁻⁷	0.0041
	А	6.42·10 ⁻⁷	0.0052	87	5.58·10 ⁻⁷	0.0045
Citronellal	В	5.85.10-7	0.0051	85	4.96·10 ⁻⁷	0.0043
	С	6.64·10 ⁻⁷	0.0072	94	6.21·10 ⁻⁷	0.0068
	D	6.07·10 ⁻⁷	0.0052	96	5.88·10 ⁻⁷	0.0050
Citronellal	B ^{II}	6.11·10 ⁻⁷	0.0053	85	5.58·10 ⁻⁷	0.0049
	BIII	5.86.10-7	0.0051	83	5.07.10-7	0.0044

*after 3 h of time-on-stream; Legend: A – Ru/(H-MCM-41+Bindizl), post synthesis (light blue square); B – Ru/(H-MCM-41+Bindizl), in-situ synthesis (dark blue diamond); C – (Ru/Bindizl)+H-MCM-41 (red triangle); D – (Ru/H-MCM-41)+Bindizl (green circle).

Figure S6. Menthol synthesis from β -citronellol over B - Ru/(H-MCM-41+Bindizl-50/80), in-situ synthesis extrudates: a) conversion and mass balance, b) total yield, c) yield of 3,7-dimethyloctan-1-ol, d) yield of menthols and isopulegols on time-on-stream.

Table S6. Menthol isomers in menthol synthesis from (\pm) -citronellal after 3 h of TOS over: A - Ru/(H-MCM-41+Bindizl-50/80), post synthesis; B - Ru/(H-MCM-41+Bindizl-50/80), in-situ synthesis; C - (Ru/Bindizl-50/80) + H-MCM-41, in-situ synthesis; D - (Ru/H-MCM-41) + Bindizl-50/80, in-situ synthesis.

	Y _{MEs}	Y _{ME}	Y _{NME}	YIME	Y _{NIME}	Y _{ME} /Y _{MEs}	Y _{NME} /Y _{MEs}	Y _{IME} /Y _{MEs}	Y _{NIME} /Y _{MEs}
Α	37.9	25.8	9.4	0.5	2.2	68	25	1	6
В	38.4	26.5	9.1	0.5	2.3	69	24	1	6
С	31.3	21.8	7.4	0.3	1.8	70	24	1	6

Figure S7. Isopulegol isomers as a function of time-on-stream in menthol synthesis from (\pm) -citronellal over: a) A - Ru/(H-MCM-41+Bindizl-50/80), post synthesis; b) B - Ru/(H-MCM-41+Bindizl-50/80), in-situ synthesis; c) C - (Ru/Bindizl-50/80) + H-MCM-41, in-situ synthesis; d) D - (Ru/H-MCM-41) + Bindizl-50/80, in-situ synthesis. Legend: isopulegol (IP, red, filled square), neoisopulegol (NIP, orange, filled diamond), isoisopulegol (IIP, red, empty triangle), neoisopulegol (NIP, orange, empty circle).

Table S7. Isopulegol isomers in menthol synthesis from (\pm)-citronellal after 3 h of TOS over: A - Ru/(H-MCM-41+Bindizl-50/80), post synthesis; B - Ru/(H-MCM-41+Bindizl-50/80), in-situ synthesis; C - (Ru/Bindizl-50/80) + H-MCM-41, in-situ synthesis; D - (Ru/H-MCM-41) + Bindizl-50/80, in-situ synthesis.

	Y _{IPs}	Y _{IP}	Y _{NP}	Y _{IIP}	Y _{NIIP}	Y _{IP} /Y _{IPs}	Y _{NIP} /Y _{IPs}	Y _{IIP} /Y _{IPs}	Y _{NIIP} /Y _{IPs}
А	0.0	0.0	0.0	0.0	0.0	-	-	-	-
В	10.5	6.2	4.3	0.1	0.0	59	41	0	0
С	16.1	10.7	4.8	0.6	0.0	66	30	4	0
D	2.2	0.6	1.6	0.0	0.0	27	73	0	0

Figure S8. a, b) The concentration of acyclic hydrogenation products as a function of the concentration of cyclic products and the concentration of p-menthadiene, p-menthaene, and p-menthane; c) the concentration of defunctionalization products as a function of the concentration of isopulegols and menthols; d) the concentration of menthols as a function of the concentration of isopulegols. Legend: A - Ru/(H-MCM-41+Bindizl), post synthesis (light blue square); B - Ru/(H-MCM-41+Bindizl), in-situ synthesis (dark blue diamond); C - (Ru/Bindizl)+H-MCM-41 (red triangle); D - (Ru/H-MCM-41)+Bindizl (green circle).

Figure S9. Product distribution in menthol synthesis from (\pm) -citronellal: a) menthols, b) isopulegols, c) 3,7-dimethyloctan-1-ol, d) p-menthane, e) citronellol, f) metha-2,8-diene, g) 2,6-dimethyloctane, h) o-

isopropenyltoluene. Legend: I - fresh B - Ru/(H-MCM-41+Bindizl-50/80), in-situ synthesis; II - reused II B - Ru/(H-MCM-41+Bindizl-50/80), in-situ synthesis; III - reused III B - Ru/(H-MCM-41+Bindizl-50/80), in-situ synthesis.

Table S8. Menthol isomers in menthol synthesis from (\pm) -citronellal after 3 h of TOS over: B - fresh B - Ru/(H-MCM-41+Bindizl-50/80), in-situ synthesis; B^{II} - reused II B - Ru/(H-MCM-41+Bindizl-50/80), in-situ synthesis; B^{III} - reused III B - Ru/(H-MCM-41+Bindizl-50/80), in-situ synthesis.

	Y _{MEs}	Y _{ME}	Y _{NME}	YIME	Y _{NIME}	Y _{ME} /Y _{MEs}	Y _{NME} /Y _{MEs}	Y _{IME} /Y _{MEs}	Y _{NIME} /Y _{MEs}
В	38.4	26.5	9.1	0.5	2.3	69	24	1	6
BII	32.6	22.3	7.4	0.5	2.1	68	23	2	6
BIII	30.8	21.6	6.8	0.4	2.0	70	22	1	6

Figure S10. Isopulegol isomers as a function of time-on-stream in menthol synthesis from (\pm) -citronellal over: a) fresh B - Ru/(H-MCM-41+Bindizl-50/80), in-situ synthesis; b) reused II B - Ru/(H-MCM-41+Bindizl-50/80), in-situ synthesis; c) reused III B - Ru/(H-MCM-41+Bindizl-50/80), in-situ synthesis. Legend: isopulegol (IP, red, filled square), neoisopulegol (NIP, orange, filled diamond), isoisopulegol (IIP, red, empty triangle), neoisoisopulegol (NIP, orange, empty circle).

Table S9. Isopulegol isomers in menthol synthesis from (\pm)-citronellal after 3 h of TOS over: B - fresh B - Ru/(H-MCM-41+Bindizl-50/80), in-situ synthesis; B^{II} - reused II B - Ru/(H-MCM-41+Bindizl-50/80), in-situ synthesis; B^{III} - reused III B - Ru/(H-MCM-41+Bindizl-50/80), in-situ synthesis.

	Y _{IPs}	Y _{IP}	Y _{NP}	Үпр	Y _{NIIP}	Y _{IP} /Y _{IPs}	Y _{NIP} /Y _{IPs}	Y _{IIP} /Y _{IPs}	Y _{NIIP} /Y _{IPs}
В	10.5	6.2	4.3	0.1	0.0	59	41	0	0
B ^{II}	18.7	11.6	6.5	0.6	0.0	62	35	3	0
BIII	18.3	11.4	6.4	0.4	0.0	62	35	2	0

References

1 M. Azkaar, P. Mäki-Arvela, Z. Vajglová, V. Fedorov, N. Kumar, L. Hupa, J. Hemming, M. Peurla, A. Aho, D.Yu. Murzin, *Reac. Chem. Eng.*, 2019, **4**, 2156-2169.

Z. Vajglová, N. Kumar, P. Mäki-Arvela, K. Eränen, M. Peurla, L. Hupa, D.Yu. Murzin, *Org. Process Res. Dev.*, 2019, **23**, 2456-2463.

3 D.Yu. Murzin, Engineering Catalysis, Walter de Gruyter, Gottingen, 2013.

4 Z. Vajglová, N. Kumar, M. Peurla, L. Hupa, K. Semikin, D.A. Sladkovskiy, D.Yu. Murzin, *Ind. Eng. Chem. Res.*, 2019, **58**, 10.