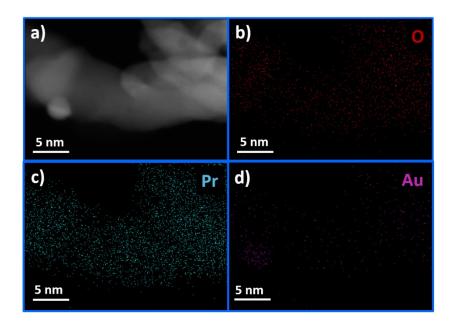
Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Support Information

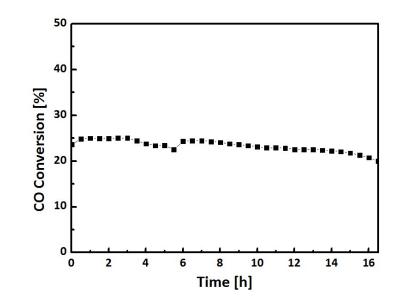
2

1


- 3 Praseodymium Hydroxide Precursor Supported Gold: New
- 4 Strategy for Preparing a Stable and Active Catalyst for the

5 Water Gas Shift Reaction

- Junjie Shi,^{ab*} Hailian Li,^a Weixuan Zhao^a, Pengfei Qi,^c Hongxin Wang^a
- 7


6

- 8 ^a Shandong Applied Research Centre of Gold Nanotechnology, School of Chemistry & Chemical
- 9 Engineering, Yantai University, Yantai 264005, China
- ^b Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United
 States
- 12 ^c State Key Laboratory of Bio-Fiber and Eco-textiles, College of Materials Science and Engineering,
- 13 Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textiles, Institute of
- 14 Marine Biobased Materials, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, PR China

15

16 Figure S1. (a) HAADF-STEM image of Au/PrO_x-M; (b, c, d) Elemental composition distributions 17 maps. O (in red), Pr (in blue), Au (in pink).

21 Figure S2. WGSR stability tests over Au/Pr(OH)_x -MDP at 300°C (2 vol% CO + 10 vol% H_2O , N_2

22 balance, m_{catalyst} = 50 mg, total flow rate 45 ml/min).

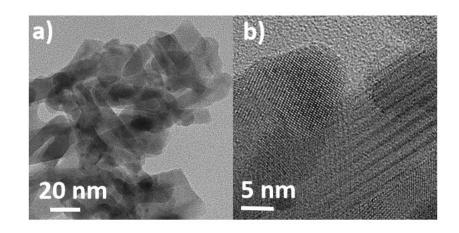


Figure S3. TEM and HRTEM micrographs of Au/Pr(OH)_x (a, b). Sample were used for WGSR for more
than 15 h from 150°C to 400 °C (feed-gas mixture: 2 vol% CO, 10 vol% H₂O, N₂ as carrier gas; total
gas flow 45 mL min⁻¹).