Towards the Preparation of Binderless ZSM-5 Zeolite Catalyst: The Crucial Role of Silanol Nest

Zaichao Li^{a,1}, Xiao Jiang^{b,1}, Guang Xiong^a, Binjian Nie^c, Chunyan Liu^a, Ning He^a, Jiaxu Liu^a*

^a State Key Laboratory of Fine Chemicals & Department of Catalytic Chemistry and

Engineering, Dalian University of Technology, Dalian, 116024, China

^b Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA

^c Birmingham Centre for Energy Storage & School of Chemical Engineering, University of

Birmingham, Edgbaston, Birmingham, UK, B15 2TT

Corresponding author

Dr. Jiaxu Liu

E-mail: liujiaxu@dlut.edu.cn

Tel.& Fax: +86-411-8498-6162

Supporting information:

Sample ^a	С _{ТРАОН}	Temperature (°C)	V_{tol}^{b} (cm ³ g ⁻¹)	V_{micro}^{c} (cm ³ g ⁻¹)	S_{BET}^{d} (m ² g ⁻¹)	S_{micro}^{c} (m ² g ⁻¹)	S_{meso}^{c} (m ² g ⁻¹)
P-D		(c) 	0.22	0.11	386	261	125
E-D		_	0.26	0.09	357	207	150
E-D-T24	0.2	170	0.23	0.09	327	197	130
E-D-T24	0.6	170	0.19	0.09	349	216	133
E-D-T24	1.2	170	0.21	0.09	380	216	164
E-D-T24	2.1	170	0.21	0.10	400	236	164
E-D-T24	2.5	170	0.22	0.10	403	228	175

Table S1 Influence of different concentration of TPAOH on physical properties of the defectiveZSM-5 zeolites

Table S2 Influence of different alkali treatment temperature on physical properties of the defective ZSM-5 zeolites

Sample ^{<i>a</i>}	C_{TPAOH}	Temperature	$V_{\rm tol}^{b}$ $V_{\rm micro}^{c}$		S_{BET}^{d}	S_{micro}^{c}	S_{meso}^{c}
	(%)	(°C)	(cm ³ g ⁻¹)	$(cm^3 g^{-1})$	(m ² g ⁻¹)	$(m^2 g^{-1})$	(m ² g ⁻¹)
P-D	—	—	0.22	0.11	386	261	125
E-D	—	—	0.26	0.09	357	207	150
E-D-T24	2.1	150	0.24	0.10	400	230	170
E-D-T24	2.1	170	0.21	0.10	400	236	164
E-D-T24	2.1	200	0.24	0.10	403	226	177

Sample ^a	С _{ТРАОН} (%)	Temperature (°C)	V_{tol}^{b} (cm ³ g ⁻¹)	$V_{\rm micro}^{c}$ (cm ³ g ⁻¹)	$\mathbf{S}_{\text{BET}}^{d}$ (m ² g ⁻¹)	S_{micro}^{c} (m ² g ⁻¹)	S_{meso}^{c} (m ² g ⁻¹)
P-D			0.22	0.11	386	261	125
E-D	—	_	0.26	0.09	357	207	150
E-D-T22	2.1	200	0.23	0.10	396	223	173
E-D-T24	2.1	200	0.24	0.10	403	226	177
E-D-T26	2.1	200	0.23	0.10	395	221	174
E-D-T28	2.1	200	0.25	0.10	400	223	177
E-D-T30	2.1	200	0.25	0.10	403	225	178

Table S3 Influence of different alkali treatment time on physical properties of the defective ZSM-5 zeolites

^aSample codes: E-D-TXX (TXX-TPAOH treat time)

^b V_{total} was determined from the amount of N₂ adsorbed at $p/p_0 = 0.99$

^{*c*} *t*-plot method applied to the N₂ isotherm

^{*d*} BET method applied to the N_2 isotherm

Sample ^a	SiO_2/Al_2O_3
P-C	24
E-C	31
E-C-2.1%T	30
E-C-2.1%T-Al	30

Table S4 SiO₂/Al₂O₃ molar ratio of the different commercial ZSM-5 zeolites

^a Determined by XRF

Somular	Particle Size	Acidic by strength (mmol/g) ^{<i>a</i>}					
Samples	(nm)	Weak/Total	Medium/Total	Strong/Total	Total		
P-D	211	0.056 (42.9%)	0.030 (22.9%)	0.044 (34.2%)	0.130		
P-D-T	—	0.030 (32.2%)	0.032 (33.9%)	0.032 (33.9%)	0.094		
P-D-T-E	—	0.028 (48.7%)	0.017 (30.4%)	0.012 (24.4%)	0.057		
E-D	209	0.047 (51.0%)	0.022 (24.5%)	0.022 (24.5%)	0.091		
E-D-2.1%T	168	0.042 (45.6%)	0.023 (24.4%)	0.028 (30.0%)	0.093		
E-D-2.1%T-Al	205	0.058 (45.1%)	0.031 (23.7%)	0.039 (31.2%)	0.128		

 Table S5 roperties of the different defective ZSM-5 zeolites.

^{*a*} Density of the acid sites, assorted according to the acid strength, determined by NH_3 -TPD. Weak: NH_3 desorbed at 120-250°C;

Medium: NH₃ desorbed at 250-350°C;

Strong: NH₃ desorbed at 350-550°C.

Table S6 physical and chemistry properties of the different defective ZSM-5 zeolites

Sample	P-D-T	E-D-2.1%T-Al
$V_{\rm tol}({\rm cm}^3{ m g}^{-1})$	0.25	0.23
$S_{\rm BET}({ m m}^2~{ m g}^{-1})$	396	407
Relative crystallinity (%)	99%	100%
n-hexane conversation -650°C (%)	85.9%	62.5%
$S_{Ethylene+Propylene}$ -650°C (%)	54.6%	49.6%

Table S7 SiO₂/Al₂O₃ molar ratio of the different defective ZSM-5 zeolites

Somular	SiO ₂ /Al ₂ O ₃					
Samples	Bulk ^a	Surface ^b				
P-D	107	78				
E-D	136	101				
E-D-2.1%T	137	102				
E-D-2.1%T-Al	102	65				

^{*a*} Determined by XRF

^b Determined by XPS

Sample ^a	Al content in filtrate (mg L ⁻¹)					
E-D-2.1%T	0.02					
E-D-2.1%T-Al	0.60					
D						

Table S8 Al content in filtrate after alkaline treatment of defective ZSM-5 zeolites.

^a Determined by ICP-OES

Sample ^a	$V_{\rm tol}{}^b$	$V_{\rm micro}^{c}$	$oldsymbol{S}_{ ext{BET}}{}^d$	S_{micro}^{c}	$S_{\rm meso}^{c}$
	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$	$(m^2 g^{-1})$	$(m^2 g^{-1})$	(m ² g ⁻¹)
E-D-T2	0.25	0.13	404	300	104
E-D-T6	0.25	0.13	402	296	106
E-D-T12	0.25	0.12	408	289	119
E-D-T18	0.24	0.12	415	266	149
E-D-T24	0.24	0.10	403	226	177
E-D-T30	0.25	0.10	403	225	178

Table S9 Physical properties of the defective ZSM-5 zeolites

^{*a*}Sample codes: E-D-TXX (TXX-TPAOH treat time)

^b V_{total} was determined from the amount of N₂ adsorbed at $p/p_0 = 0.99$

^{*c*} *t*-plot method applied to the N₂ isotherm

^{*d*} BET method applied to the N_2 isotherm

Samples	Conversion	Selectivity (%)								
	(%)	CH ₄	C_2H_4	C_2H_6	C_3H_6	C_3H_8	C_4H_8	C_4H_{10}	C_5^+	BTX
P-D-500°C	24.5	0.9	6.6	6.7	25.3	12.1	17.7	7.3	15.4	8.0
P-D-550°C	44.7	2.0	10.9	8.4	25.5	19.2	6.4	14.2	8.0	5.4
P-D-600°C	63.9	2.4	14.1	10.4	34.5	13.2	4.1	12.9	5.1	3.3
P-D-650°C	85.1	3.4	19.8	10.6	34.7	11.3	3.9	8.1	3.3	4.9
E-D-500°C	8.9	1.1	5.7	6.5	30.2	9.9	4.0	11.3	26.1	5.2
E-D-550°C	16.3	1.9	8.6	9.7	35.0	12.3	1.1	15.2	11.9	4.3
E-D-600°C	30.1	2.8	11.7	10.2	32.7	12.4	4.1	14.2	7.2	4.7
E-D-650°C	48.2	4.3	16.2	10.1	31.3	11.1	3.7	11.6	6.0	5.7
E-D-2.1%T-500°C	9.3	1.4	7.1	7.9	38.0	11.2	3.0	15.0	14.3	2.1
E-D-2.1%T-550°C	18.9	2.1	9.1	10.0	34.9	13.7	4.3	16.3	7.6	2.0
E-D-2.1%T-600°C	36.9	2.9	12.2	10.6	33.6	13.6	4.1	15.5	5.2	2.3
E-D-2.1%T-650°C	55.2	4.5	17.4	11.3	31.6	11.4	4.4	11.1	3.8	4.5
E-D-2.1%T-Al-500°C	11.2	1.2	6.7	7.6	36.4	11.1	2.9	13.8	16.1	4.2
E-D-2.1%T-Al-550°C	22.0	1.8	8.7	9.8	34.8	13.0	4.1	15.8	8.3	3.7
E-D-2.1%T-Al-600°C	40.2	2.7	12.2	11.1	34.1	11.8	4.9	13.5	5.3	4.4
E-D-2.1%T-Al-650°C	62.5	4.0	16.4	10.4	33.2	11.3	3.9	11.8	4.4	4.6
^a Reaction condit	tions: T =	500°C	C, 550)°С, б	600 °C,	and	650	°C, P) =	101.33

Table S10 Conversion and products distribution of n-hexane catalytic cracking over different defective ZSM-5 zeolites^a

kPa.

Fig. S1 NH₃-TPD profiles of the effect over different types of aluminum source on the acidity of different defective ZSM-5 zeolites during alumination process. (a) P-D (defective ZSM-5 zeolite powder), (b) E-D-2.1%T-Al (E-D-2.1%T + 0.03 g Al₂O₃), (c) E-D-2.1%T-Al-1 (E-D-2.1%T + 0.03 g C₉H₂₁AlO₃), (d) E-D-2.1%T-Al-2 (E-D-2.1%T + 0.03 g Al(NO₃)₃·9H₂O), (e) E-D-2.1%T-Al-3 (E-D-2.1%T + 0.03 g NaAlO₂).

Fig. S2 N_2 -adsorption and desorption isotherms of the different defective ZSM-5 zeolites. (a) P-D (defective ZSM-5 zeolite powder), (b) P-D-T (alkali treatment of P-D), (c) P-D-T-E (Extrudate: P-D-T + 20% SiO₂ binder).

Fig. S3 (a) The time of TPAOH treatment versus the detailed changes of pore structure. (b) The time of TPAOH treatment versus the detailed changes of hydroxyl-nest and acidity.

Fig. S4 Catalytic performance of the different defective ZSM-5 zeolites in the n-hexane catalytic cracking reaction.

P-D (defective ZSM-5 zeolite powder), *E-D* (Extrudate: P-D + 20% SiO₂ binder), *E-D*-2.1%T (2.1%TPAOH treatment of *E-D*), *E-D*-2.1%T-Al (*E-D*-2.1%T + 0.03 g Al₂O₃).

(a) Conversion of n-hexane ($C_{n-hexane}$) versus C_B derived from pyridine, (b) Conversion of n-hexane ($C_{n-hexane}$) versus the micropore surface area.