Supporting Information

CO₂ Reduction and Ethane Dehydrogenation on Transition Metal Catalysts: Mechanistic Insights, Reactivity Trends and Rational Design of Bimetallic Alloys

Fatima Jalid^{1,2}, Tuhin Suvra Khan^{1,\$}, M. Ali Haider^{1,\$} ¹Renewable Energy and Chemicals Laboratory, Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110016, India. ²Department of Chemical Engineering, National Institute of Technology Srinagar, Srinagar, Jammu and Kashmir, 190006, India [§]Corresponding Authors Email: <u>tuhinsk@iitd.ac.in</u>, <u>haider@iitd.ac.in</u> Fax: +91-11-2658-2037; Tel: +91-11-26591016

SI-1 Reaction Scheme

The elementary reactions included in the MKM to understand the CO_2 assisted dehydrogenation of ethane on the terrace and stepped sites of transition metal catalysts are mentioned below. '*t' represents a free step site (111), '*s' represents a free step site (211), '*h' represents the hydrogen site and the subscript '(g)' represents the gas phase species. The superscript 't', 's' and 'h' represents species adsorbed on terrace sites, step site and hydrogen site respectively. The following are the reaction steps studied for (111) sites:

```
CH_3CH_{3(g)} + *t + *t \rightarrow CH_3^t + CH_3^t
  CH_3CH_{3(g)} + *t + *h \rightarrow CH_3CH_2^t + H^h
CH_3CH_{3(g)} + *t + OH^t \rightarrow H_2O^t + CH_3CH_2^t
 CH_3CH_{3(g)} + *t + Ot \rightarrow CH_3CH_2t + OHt
         CH_3CH_2^t + *t \rightarrow CH_3^t + CH_2^t
         CH_2CH_2^t + *t \rightarrow CH_2^t + CH_2^t
       CH_3CH_2^t + *h \rightarrow CH_2CH_2^t + H^h
    CH_3CH_2^{t} + OH^{t} \rightarrow CH_2CH_2^{t} + H_2O^{t}
      CH_3CH_2^t + O^t \rightarrow CH_2CH_2^t + OH^t
           CH_2CH_2^t \rightarrow CH_2CH_{2(g)} + *t
              CH^{t} + O^{t} \rightarrow CHO^{t} + *t
              CHO^{t} + *h \rightarrow CO^{t} + H^{h}
              \mathrm{COH}^{t} + *h \rightarrow \mathrm{CO}^{t} + \mathrm{H}^{h}
             CHO^{t} + O^{t} \rightarrow CO^{t} + OH^{t}
           CHO^{t} + OH^{t} \rightarrow CO^{t} + H_{2}O^{t}
              C^t + OH^t \rightarrow COH^t + *t
           COH^{t} + OH^{t} \rightarrow CO^{t} + H_{2}O^{t}
             COH^{t} + O^{t} \rightarrow CO^{t} + OH^{t}
```

$$\begin{array}{c} C^{t} + O^{t} \xrightarrow{} CO^{t} + *t \\ CH^{t} + *h \xrightarrow{} C^{t} + H^{h} \\ C^{t} + H_{2}O^{t} \xrightarrow{} CH^{t} + OH^{t} \\ C^{t} + OH^{t} \xrightarrow{} CH^{t} + OH^{t} \\ CH_{2}^{t} + *h \xrightarrow{} CH^{t} + H^{h} \\ CH^{t} + H_{2}O^{t} \xrightarrow{} CH_{2}^{t} + OH^{t} \\ CH^{t} + OH^{t} \xrightarrow{} CH_{2}^{t} + OH^{t} \\ CH_{2}^{t} + H^{h} \xrightarrow{} CH_{3}^{t} + *h \\ CH_{2}^{t} + H_{2}O^{t} \xrightarrow{} CH_{3}^{t} + OH^{t} \\ CH_{2}^{t} + H^{h} \xrightarrow{} CH_{3}^{t} + OH^{t} \\ CH_{3}^{t} + H^{h} \xrightarrow{} CH_{4}(g) + OH^{t} + *t \\ CH_{3}^{t} + H^{h} \xrightarrow{} CH_{4}(g) + OH^{t} + *t \\ CH_{3}^{t} + OH^{t} \xrightarrow{} CH_{4}(g) + OH^{t} + *t \\ CH_{3}^{t} + OH^{t} \xrightarrow{} CH_{4}(g) + O^{t} + *h \\ Ot + H^{h} \xrightarrow{} OH^{t} + h^{h} \\ Ot + H^{h} \xrightarrow{} OH^{t} + Nh \\ Ot + H^{h} \xrightarrow{} OH^{t} + Nh \\ OH^{t} + OH^{t} \xrightarrow{} H_{2}O^{t} + Nt \\ OH^{t} + OH^{t} \xrightarrow{} H_{2}O^{t} + Nt \\ CO_{2}(g) + *t + *t \xrightarrow{} COO^{t} + O^{t} \\ CO_{2}(g) + H^{h} + *t \xrightarrow{} COO^{t} + OH^{t} \\ CO_{2}(g) + H^{h} + *t \xrightarrow{} HCOO^{t} + *h \\ HCOO^{t} + *t \xrightarrow{} CHO^{t} + Ot \\ H_{2}OO^{t} + *t \xrightarrow{} CHO^{t} + Nt \\ \end{array}$$

The following are the reaction steps studied for (211) sites:

$$\begin{array}{c} \operatorname{CH}_2{}^s + {}^sh \xrightarrow{\rightarrow} \operatorname{CH}^s + \operatorname{H}^h\\ \operatorname{CH}^s + \operatorname{H}_2\operatorname{O}^s \xrightarrow{\rightarrow} \operatorname{CH}_2{}^s + \operatorname{OH}^s\\ \operatorname{CH}^s + \operatorname{OH}^s \xrightarrow{\rightarrow} \operatorname{CH}_2{}^s + \operatorname{OH}^s\\ \operatorname{CH}_2{}^s + \operatorname{Hh}^{\rightarrow} \xrightarrow{\rightarrow} \operatorname{CH}_3{}^s + {}^sh\\ \operatorname{CH}_2{}^s + \operatorname{H}_2\operatorname{O}^s \xrightarrow{\rightarrow} \operatorname{CH}_3{}^s + {}^sh\\ \operatorname{CH}_2{}^s + \operatorname{OH}^s \xrightarrow{\rightarrow} \operatorname{CH}_3{}^s + {}^sh\\ \operatorname{CH}_3{}^s + \operatorname{Hh}^{\rightarrow} \xrightarrow{\rightarrow} \operatorname{CH}_4{}_{(g)} + {}^sh + {}^sh\\ \operatorname{CH}_3{}^s + \operatorname{Hh}^{\rightarrow} \xrightarrow{\rightarrow} \operatorname{CH}_4{}_{(g)} + {}^sh + {}^sh\\ \operatorname{CH}_3{}^s + \operatorname{OH}^s \xrightarrow{\rightarrow} \operatorname{CH}_4{}_{(g)} + {}^sh + {}^sh\\ \operatorname{CH}_3{}^s + \operatorname{OH}^s \xrightarrow{\rightarrow} \operatorname{CH}_4{}_{(g)} + {}^sh + {}^sh\\ \operatorname{CH}_3{}^s + \operatorname{OH}^s \xrightarrow{\rightarrow} \operatorname{CH}_4{}_{(g)} + {}^sh + {}^sh\\ \operatorname{CH}_3{}^s + \operatorname{OH}^s \xrightarrow{\rightarrow} \operatorname{CH}_4{}_{(g)} + {}^sh + {}^sh\\ \operatorname{OH}^s + \operatorname{Hh}^{\rightarrow} \operatorname{H}_2{}_{(g)} + {}^sh + {}^sh\\ \operatorname{O}^s + \operatorname{Hh}^{\rightarrow} \xrightarrow{\rightarrow} \operatorname{OH}^s + {}^sh\\ \operatorname{OH}^s + \operatorname{OH}^s \xrightarrow{\rightarrow} \operatorname{H}_2{}_{2}{}^s + {}^sh\\ \operatorname{OH}^s + \operatorname{OH}^s \xrightarrow{\rightarrow} \operatorname{H}_2{}_{2}{}^s + {}^sh\\ \operatorname{CO}_2{}_{(g)} + {}^sh + {}^sh\\ \operatorname{COOH}^s + {}^sh \xrightarrow{\rightarrow} \operatorname{CO}^s + {}^sh\\ \operatorname{COOH}^s + {}^sh \xrightarrow{\rightarrow} \operatorname{CO}^s + {}^sh\\ \operatorname{HCOO}^s + {}^sh \xrightarrow{\rightarrow} \operatorname{CHO}^s + {}^sh\\ \operatorname{HCOO}^s + {}^sh \xrightarrow{\rightarrow} \operatorname{CHO}^s + {}^sh\\ \operatorname{HCOO}^s + {}^sh \xrightarrow{\rightarrow} \operatorname{C}_2{}^s + {}^sh\\ \operatorname{C}_2{}^s \xrightarrow{\rightarrow} {}^sh \xrightarrow{\rightarrow} \operatorname{C}_2{}^s + {}^sh\\ \operatorname{C}_2{}^s \xrightarrow{\rightarrow} {}^sh \xrightarrow{\rightarrow} \operatorname{C}_2{}^sh + {}^sh\\ \operatorname{HCOO}^s + {}^sh \xrightarrow{\rightarrow} \operatorname{C}_2{}^sh + {}^sh\\ \operatorname{C}_2{}^s \xrightarrow{\rightarrow} {}^sh \xrightarrow{\rightarrow} \operatorname{C}_2{}^sh + {}^sh\\ \operatorname{HCO}^s + {}^sh \xrightarrow{\rightarrow} \operatorname{C}_2{}^sh + {}^sh\\ \operatorname{HCO}^s \xrightarrow{\rightarrow} {}^sh \xrightarrow{\rightarrow} {}^sh \xrightarrow{\rightarrow} \operatorname{C}_2{}^sh + {}^sh\\ \operatorname{HCO}^s \xrightarrow{\rightarrow} {}^sh \xrightarrow{\rightarrow} {}^sh \xrightarrow{\rightarrow} {}^sh \xrightarrow{\rightarrow} \operatorname{C}_2{}^sh + {}^sh\\ \operatorname{HCO}^s \xrightarrow{\rightarrow} {}^sh \xrightarrow{\rightarrow} {}^s$$

SI-2 Methodology

Figure SI-1 Adsorption of CH_3CH_2 on (a) Cu(111), (b) Pd(111), (c) Pt(111) and (d) Rh (111); adsorption of CH_2CH_2 on (e) Cu(111), (f) Pd(111), (g) Pt(111) and (h) Rh(111).

Reference	Article	DFT		Potential
		Method		
1.	Energy Environ. Sci. 3 , 1311–1315	DACAPO	RPBE	USPP
	(2010)			
2.	Top Catal. 57, 135–142 (2014)	DACAPO	RPBE	USPP
3.	<i>Phy. Rev. Lett.</i> 99 , 016105 (2007)	DACAPO	RPBE	USPP
4.	Phys. Chem. Chem. Phys. 13, 20760-	DACAPO	RPBE	USPP
	20765 (2011)			
5.	J. Phys. Chem. C 113, 10548–10553	DACAPO	RPBE	USPP
	(2009)			
6.	Angew. Chem. Int. Ed. 47, 4835–4839	DACAPO	RPBE	USPP
	(2008)			
7.	Catal. Lett. 141, 370–373 (2011)	DACAPO	RPBE	USPP
8.	J. Catal, 293, 51–60 (2012)	DACAPO	RPBE	USPP
9.	Angew. Chem. Int. Ed. 51, 272–274	DACAPO	RPBE	USPP
	(2012)			
10.	J Catal. 374, 161–170 (2019).	Quantum	BEEF-	GBRV
		Espresso	vdW	
11.	J. Am. Chem. Soc. 133 (2011) 5009–5015	VASP	PW91	USPP
	(only for Energy for C2(g))			
12.	New J. Phys. 15, 125021 (2013)	DACAPO	RPBE	USPP

Table SI-1 Details of the reference used for CatMAP data, their source article and DFT set-up

Table SI-2 Carbon (E _C) and oxygen binding energies (E _O) over transition metal surfa	ices
calculated using VASP plane-wave method.	

Surface	E _C (VASP)	E ₀ (VASP)
	(eV)	(eV)
Ag	6.05	2.50
Cu	4.59	1.42
Pd	2.44	1.59
Pt	2.45	1.80
Rh	2.15	0.75

Table SI-3 Carbon (E_C) and oxygen binding energies (E_O) over transition metal surfaces calculated using DACAPO plane-wave method.

Surface	E _C (DACAPO)	E _O (DACAPO)
	(eV)	(eV)
Ag	5.57	2.05
Cu	4.36	1.07
Pd	2.52	1.55
Pt	2.16	1.62
Rh	1.95	0.55

Figure SI-2 Scaling Relationship Plots

Figure SI-3 Geometry optimized adsorption configurations of C₂ species at the transition metals (211) surfaces.

Figure SI-4 Top view of (a) AB and (b) AA termination of A₃B bimetallic alloys of Pt and Ni screened in the MKM.

SI-3 Reactivity of Terrace (111) Sites

Figure SI-5 Volcano plots for the consumption rates of (a) H_2O ; elementary reaction rates of CO₂ dissociation via (b) carboxyl (COOH) and (c) formate (HCOO) route; production rate plots of (d) CH₄ and (e) coverage of O* over (111) facets of transition metal catalysts. Error bar = 0.2 eV.

SI-4 Reactivity of Step (211) Sites

Figure SI-6 Volcano plots for the consumption rates of (a) H_2O ; elementary reaction rates of CO_2 dissociation via (b) carboxyl (COOH) and (c) formate (HCOO) route; production rate plots of (d) CH_4 and (e) coverage of O* over (211) facets of transition metal catalysts. Error bar = 0.2 eV.

Figure SI-7 Volcano plots for H₂ production rates over (a) AA surface termination and (b) AB surface termination of Ni based A₃B alloys; and (c) AA surface termination and (d) AB surface termination of Pt based A₃B alloys

SI-5 Reaction Energetics

The formation energies of the species used in the model are listed in Table SI-1. The formation energies of all the species are referenced with respect to methane, hydrogen, and water; for C, H and O atom respectively. The energies have been obtained from previous literature¹⁻¹² and calculated in this work. The literature source for the formation energies and respective DFT

setup employed is given in Table SI-2. The descriptor energies for Ni and Pt based A_3B alloys have been taken from the study on methane steam reforming conducted by Xu et al¹³.

Species	Facet	Surface	Formation Energy
C ₂	gas	None	2.30
CH ₂ CH ₂	gas	None	2.25
CH ₃ CH3	gas	None	0.80
CH ₄	gas	None	0.00
СО	gas	None	2.77
CO ₂	gas	None	2.47
H ₂	gas	None	0.00
H ₂ O	gas	None	0.00
С	111	Ag	5.57
С	111	Au	4.77
С	111	Co	2.32
С	111	Co	2.32
С	111	Cu	4.36
С	111	Ni	2.46
С	111	Pd	2.52
С	111	Pt	2.16
С	111	Re	1.35
C	111	Ru	1.42
C-C	111	Ag	10.97
C-C	111	Au	9.69
C-C	111	Cu	9.03
C-C	111	Ni	5.99
C-C	111	Pd	6.09
C-C	111	Pt	5.51
C-C	111	Rh	5.18
С-Н	111	Ag	6.53
С-Н	111	Au	5.81
С-Н	111	Со	2.81
С-Н	111	Cu	5.06
С-Н	111	Ni	2.87
С-Н	111	Pd	3.12

Table SI-4 Formation energies of the species used in the MKM. Formation energies arereferences to CH_4 , H_2O and H_2 .

С-Н	111	Pt	3.10
С-Н	111	Re	1.96
С-Н	111	Rh	2.56
С-Н	111	Rh	2.56
С-Н	111	Ru	2.53
С-НО	111	Cu	5.15
С-НО	111	Pd	4.12
С-НО	111	Pt	3.82
С-НО	111	Rh	3.19
С-НОН	111	Cu	4.86
С-НОН	111	Pd	3.24
С-НОН	111	Pt	2.96
С-НОН	111	Rh	2.73
C-0	111	Ag	8.15
C-0	111	Au	7.96
C-0	111	Cu	6.40
C-0	111	Ni	4.30
C-0	111	Pd	5.31
C-0	111	Pt	5.08
C-0	111	Rh	4.05
С-ОН	111	Ag	7.05
С-ОН	111	Au	6.98
С-ОН	111	Cu	5.78
С-ОН	111	Ni	4.18
С-ОН	111	Pd	4.82
С-ОН	111	Pt	4.55
С-ОН	111	Rh	3.96
СН	111	Ag	3.96
СН	111	Au	3.23
СН	111	Со	1.51
СН	111	Cu	2.85
СН	111	Ni	1.48
СН	111	Pd	1.74
СН	111	Pt	1.23
СН	111	Re	0.57
СН	111	Rh	1.21
СН	111	Ru	1.14
CH-O	111	Ag	6.86
CH-O	111	Au	6.72
CH-O	111	Со	3.38
CH-O	111	Cu	5.19
CH-O	111	Ni	3.51

CH-O	111	Pd	4.68
CH-O	111	Pt	4.33
CH-O	111	Re	1.59
CH-O	111	Rh	3.46
CH-O	111	Ru	2.91
CH ₂	111	Ag	3.04
CH ₂	111	Au	2.65
CH ₂	111	Со	1.45
CH ₂	111	Cu	2.35
CH ₂	111	Ni	1.44
CH ₂	111	Pd	1.64
CH ₂	111	Pt	1.21
CH ₂	111	Re	0.64
CH ₂	111	Rh	1.33
CH ₂	111	Ru	1.17
CH ₂ -CH ₂	111	Cu	5.81
CH ₂ -CH ₂	111	Pd	4.67
CH ₂ -CH ₂	111	Pt	3.99
CH ₂ -CH ₂	111	Rh	4.18
CH ₂ CH ₂	111	Cu	2.42
CH ₂ CH ₂	111	Pd	1.93
CH ₂ CH ₂	111	Pt	1.78
CH ₂ CH ₂	111	Rh	1.77
CH ₃	111	Ag	1.60
CH ₃	111	Au	1.35
CH ₃	111	Со	0.89
CH ₃	111	Cu	1.30
CH ₃	111	Ni	0.93
CH ₃	111	Pd	0.92
CH ₃	111	Pt	0.55
CH ₃	111	Re	0.50
CH ₃	111	Rh	0.84
CH ₃	111	Ru	0.73
CH ₃ -CH ₂	111	Cu	4.97
CH ₃ -CH ₂	111	Pd	4.10
CH ₃ -CH ₂	111	Pt	3.46
CH ₃ -CH ₂	111	Rh	3.79
CH ₃ -CH ₃	111	Cu	4.13
CH ₃ -CH ₃	111	Pd	3.52
CH ₃ -CH ₃	111	Pt	2.93
CH ₃ -CH ₃	111	Rh	3.39
CH ₃ CH ₂	111	Cu	2.32

CH ₃ CH ₂	111	Pd	1.68
CH ₃ CH ₂	111	Pt	1.45
CH ₃ CH ₂	111	Rh	1.57
CH ₃ CH ₂ -H	111	Со	2.09
CH ₃ CH ₂ -H	111	Pd	1.77
CH ₃ CH ₂ -H	111	Pt	1.68
CH ₃ CH ₂ -H	111	Rh	1.65
CH ₃ CH ₂ -HO	111	Cu	3.40
CH ₃ CH ₂ -HO	111	Pd	3.39
CH ₃ CH ₂ -HO	111	Pt	3.21
CH ₃ CH ₂ -HO	111	Rh	2.86
CH ₃ CH ₂ -HOH	111	Cu	3.10
CH ₃ CH ₂ -HOH	111	Pd	2.52
CH ₃ CH ₂ -HOH	111	Pt	2.34
CH ₃ CH ₂ -HOH	111	Rh	2.40
СНО	111	Ag	3.31
СНО	111	Au	2.94
СНО	111	Cu	3.07
СНО	111	Ni	2.24
СНО	111	Pd	2.15
СНО	111	Pt	3.54
СНО	111	Rh	0.34
СНО-О	111	Cu	5.36
СНО-О	111	Pd	5.01
СНО-О	111	Pt	5.65
СНО-О	111	Rh	2.76
СО	111	Ag	2.99
СО	111	Au	3.04
СО	111	Cu	2.58
СО	111	Cu	2.58
СО	111	Ni	1.63
СО	111	Pd	1.55
СО	111	Pd	1.55
СО	111	Pt	1.70
СО	111	Pt	1.70
СО	111	Rh	1.34
СО	111	Rh	1.34
СО	111	Ru	1.30
СО-Н	111	Cu	3.28
СО-Н	111	Pd	2.13
СО-Н	111	Pt	2.30
СО-Н	111	Rh	2.02

СО-НО	111	Cu	3.62
СО-НО	111	Pd	3.28
СО-НО	111	Pt	3.43
СО-НО	111	Rh	2.66
СО-НОН	111	Cu	3.32
СО-НОН	111	Pd	2.40
СО-НОН	111	Pt	2.56
СО-НОН	111	Rh	2.20
СО-ОН	111	Ag	4.98
СО-ОН	111	Ag	4.98
СО-ОН	111	Au	5.59
СО-ОН	111	Au	5.59
СО-ОН	111	Cu	4.36
СО-ОН	111	Cu	4.36
СО-ОН	111	Ni	3.51
СО-ОН	111	Ni	3.51
СО-ОН	111	Pd	4.04
СО-ОН	111	Pd	4.04
СО-ОН	111	Pt	4.18
СО-ОН	111	Pt	4.18
СО-ОН	111	Rh	3.47
СО-ОН	111	Rh	3.47
СО-ОН	111	Ru	3.24
СО-ОН	111	Ru	3.24
СОН	111	Ag	4.60
СОН	111	Cu	3.56
СОН	111	Ni	1.87
СОН	111	Pd	1.84
СОН	111	Pt	1.99
СОН	111	Rh	0.59
СОО-Н	111	Cu	3.79
СОО-Н	111	Pd	2.92
СОО-Н	111	Pt	3.05
СОО-Н	111	Rh	3.14
СООН	111	Ag	3.13
СООН	111	Au	3.01
СООН	111	Cu	2.82
СООН	111	Ni	2.25
СООН	111	Pd	2.39
СООН	111	Pt	1.41
СООН	111	Rh	1.23
Н	111	Ag	0.24

Н	111	Au	0.17
Н	111	Cu	-0.09
Н	111	Cu	-0.09
Н	111	Ni	-0.39
Н	111	Pd	-0.40
Н	111	Pd	-0.40
Н	111	Pt	-0.35
Н	111	Pt	-0.35
Н	111	Re	-0.53
Н	111	Rh	-0.32
Н	111	Rh	-0.32
Н	111	Ru	-0.44
Н-СН	111	Ag	4.90
Н-СН	111	Au	4.26
Н-СН	111	Со	1.73
Н-СН	111	Cu	3.52
Н-СН	111	Ni	1.78
Н-СН	111	Pd	2.24
H-CH	111	Pt	1.80
Н-СН	111	Re	0.84
Н-СН	111	Rh	1.40
Н-СН	111	Ru	1.39
H-CH ₂	111	Ag	3.99
H-CH ₂	111	Au	3.45
H-CH ₂	111	Со	1.65
H-CH ₂	111	Cu	2.87
H-CH ₂	111	Ni	1.73
H-CH ₂	111	Pd	1.95
H-CH ₂	111	Pt	1.53
H-CH ₂	111	Re	1.24
H-CH ₂	111	Rh	1.44
H-CH ₂	111	Ru	1.43
H-CH ₂ CH ₂	111	Cu	3.15
H-CH ₂ CH ₂	111	Pd	2.46
H-CH ₂ CH ₂	111	Pt	2.37
H-CH ₂ CH ₂	111	Rh	2.39
H-CH ₃	111	Ag	2.49
H-CH ₃	111	Au	2.23
H-CH ₃	111	Со	1.43
H-CH ₃	111	Cu	1.94
H-CH ₃	111	Ni	1.27
H-CH ₃	111	Pd	1.13

H-CH ₃	111	Pt	1.06
Н-СН3	111	Re	1.25
H-CH ₃	111	Rh	1.08
H-CH ₃	111	Ru	1.06
Н-СО	111	Cu	3.28
Н-СО	111	Pd	2.13
Н-СО	111	Pt	2.30
Н-СО	111	Rh	2.02
Н-СОО	111	Cu	3.20
H-COO	111	Pd	3.39
H-COO	111	Pt	3.63
H-H	111	Au	1.15
H-H	111	Cu	0.78
H-H	111	Pd	0.12
H-H	111	Pt	0.19
Н-ОН	111	Ag	1.78
Н-ОН	111	Au	2.00
Н-ОН	111	Со	1.03
Н-ОН	111	Cu	1.30
Н-ОН	111	Cu	1.30
Н-ОН	111	Ni	0.91
Н-ОН	111	Pd	1.18
Н-ОН	111	Pd	1.18
Н-ОН	111	Pt	0.85
Н-ОН	111	Re	0.52
Н-ОН	111	Rh	0.85
Н-ОН	111	Ru	0.74
H ₂ O	111	Ag	-0.04
H ₂ O	111	Au	-0.03
H ₂ O	111	Со	-0.05
H ₂ O	111	Cu	-0.04
H ₂ O	111	Ni	-0.05
H ₂ O	111	Pd	-0.08
H ₂ O	111	Pt	-0.05
H ₂ O	111	Re	-0.17
H ₂ O	111	Rh	-0.11
H ₂ O	111	Ru	-0.21
НСО	111	Ag	3.31
НСО	111	Au	2.94
НСО	111	Cu	3.07
НСО	111	Ni	2.24
НСО	111	Pd	2.15

НСО	111	Pt	3.54
НСО	111	Rh	0.34
НСОО	111	Cu	2.07
НСОО	111	Pd	2.47
НСОО	111	Pt	2.54
НОН-СН	111	Cu	3.56
HOH-CH	111	Pd	2.57
HOH-CH	111	Pt	2.15
НОН-СН	111	Rh	2.09
HOH-CH ₂	111	Cu	3.13
HOH-CH ₂	111	Pd	2.48
HOH-CH ₂	111	Pt	2.14
HOH-CH ₂	111	Rh	2.19
HOH-CH ₂ CH ₂	111	Cu	3.19
HOH-CH ₂ CH ₂	111	Pd	2.73
HOH-CH ₂ CH ₂	111	Pt	2.63
HOH-CH ₂ CH ₂	111	Rh	2.57
HOH-CH ₃	111	Cu	2.22
HOH-CH ₃	111	Pd	1.86
HOH-CH ₃	111	Pt	1.57
HOH-CH ₃	111	Rh	1.77
0	111	Ag	2.05
0	111	Au	2.61
0	111	Со	0.15
0	111	Cu	1.07
0	111	Ni	0.35
0	111	Pd	1.55
0	111	Pt	1.62
0	111	Re	-1.15
0	111	Rh	0.55
0	111	Ru	-0.07
O-CO	111	Ag	5.05
O-CO	111	Au	5.74
O-CO	111	Cu	4.18
O-CO	111	Ni	3.25
O-CO	111	Pd	4.20
O-CO	111	Pt	4.04
O-CO	111	Rh	3.10
O-CO	111	Ru	2.53
О-Н	111	Ag	3.09
O-H	111	Au	3.56
O-H	111	Co	1.02

О-Н	111	Cu	2.03
О-Н	111	Cu	2.03
О-Н	111	Ni	1.18
О-Н	111	Pd	2.12
О-Н	111	Pt	2.12
О-Н	111	Re	0.25
О-Н	111	Rh	1.52
О-Н	111	Ru	1.31
О-НОН	111	Cu	2.02
О-НОН	111	Pd	2.40
О-НОН	111	Pt	2.49
О-НОН	111	Rh	1.52
ОН	111	Ag	0.67
ОН	111	Au	1.39
ОН	111	Со	0.05
ОН	111	Cu	0.30
ОН	111	Cu	0.30
ОН	111	Ni	0.20
OH	111	Pd	0.94
OH	111	Pd	0.94
OH	111	Pt	0.96
ОН	111	Pt	0.96
ОН	111	Re	-0.35
ОН	111	Rh	0.43
ОН	111	Rh	0.43
ОН	111	Ru	0.19
OH-CH	111	Cu	3.85
OH-CH	111	Pd	3.44
OH-CH	111	Pt	3.02
OH-CH	111	Rh	2.55
OH-CH ₂	111	Cu	3.42
OH-CH ₂	111	Pd	3.36
OH-CH ₂	111	Pt	3.00
OH-CH ₂	111	Rh	2.65
OH-CH ₂ CH ₂	111	Cu	3.48
OH-CH ₂ CH ₂	111	Pd	3.61
OH-CH ₂ CH ₂	111	Pt	3.49
OH-CH ₂ CH ₂	111	Rh	3.03
OH-CH ₃	111	Cu	2.52
OH-CH ₃	111	Pd	2.74
OH-CH ₃	111	Pt	2.44
OH-CH ₃	111	Rh	2.23

OH-OH	111	Cu	1.66
OH-OH	111	Pd	2.75
OH-OH	111	Pt	2.79
OH-OH	111	Rh	1.88
С	211	Ag	5.07
С	211	Au	4.77
С	211	Со	1.70
С	211	Cu	3.54
С	211	Ni	1.52
С	211	Pd	1.51
С	211	Pt	2.10
С	211	Re	0.38
С	211	Rh	1.38
С	211	Ru	1.23
C-C	211	Ag	11.02
C-C	211	Au	10.36
C-C	211	Со	5.07
C-C	211	Cu	8.22
C-C	211	Pt	6.03
C-C	211	Rh	4.51
C-C	211	Ru	4.37
С-Н	211	Cu	4.31
С-Н	211	Ni	2.02
С-Н	211	Pd	2.25
С-Н	211	Pt	3.06
С-Н	211	Rh	1.97
С-Н	211	Ru	1.74
С-НО	211	Ag	5.92
С-НО	211	Cu	4.15
С-НО	211	Pd	2.73
С-НО	211	Pt	3.26
С-НО	211	Rh	2.01
С-НОН	211	Ag	5.40
С-НОН	211	Cu	4.03
С-НОН	211	Pd	2.29
С-НОН	211	Pt	2.83
С-НОН	211	Rh	2.08
C-0	211	Ag	8.07
C-0	211	Au	8.18
C-0	211	Со	3.19
C-0	211	Ni	3.43
C-0	211	Pd	4.63

C-0	211	Pt	4.11
C-0	211	Re	1.21
C-0	211	Rh	3.03
C-0	211	Ru	2.80
С-ОН	211	Ag	6.57
С-ОН	211	Cu	4.83
С-ОН	211	Ni	2.36
С-ОН	211	Pd	3.34
С-ОН	211	Pt	3.30
С-ОН	211	Rh	2.64
C ₂	211	Ag	5.80
C ₂	211	Cu	4.44
C ₂	211	Ni	3.57
C ₂	211	Pd	4.03
C ₂	211	Rh	4.23
СН	211	Ag	3.96
СН	211	Au	3.43
СН	211	Со	1.16
СН	211	Cu	2.70
СН	211	Ni	1.22
СН	211	Pd	1.57
СН	211	Pt	1.19
СН	211	Re	0.06
СН	211	Rh	1.01
СН	211	Ru	0.71
CH-O	211	Ag	6.96
CH-O	211	Au	7.28
CH-O	211	Cu	5.08
CH-O	211	Pd	4.87
CH-O	211	Pt	4.76
CH-O	211	Rh	3.28
CH-O	211	Ru	2.58
CH ₂	211	Ag	2.87
CH ₂	211	Au	2.23
CH ₂	211	Co	0.79
CH ₂	211	Cu	2.22
CH ₂	211	Ni	1.14
CH ₂	211	Pd	1.28
CH ₂	211	Pt	0.76
CH ₂	211	Re	0.21
CH ₂	211	Rh	0.76
CH ₂	211	Ru	0.69

CH ₂ -CH ₂	211	Ag	5.75
CH ₂ -CH ₂	211	Au	4.94
CH ₂ -CH ₂	211	Cu	4.43
CH ₂ -CH ₂	211	Pd	3.34
CH ₂ -CH ₂	211	Pt	3.16
CH ₂ -CH ₂	211	Rh	2.55
CH ₂ -CH ₂	211	Ru	2.25
CH ₂ CH ₂	211	Ag	2.39
CH ₂ CH ₂	211	Cu	2.26
CH ₂ CH ₂	211	Pd	1.72
CH ₂ CH ₂	211	Pt	1.58
CH ₂ CH ₂	211	Pt	1.58
CH ₂ CH ₂	211	Rh	1.48
CH ₃	211	Ag	1.39
CH ₃	211	Au	1.10
CH ₃	211	Со	0.04
CH ₃	211	Cu	0.97
CH ₃	211	Ni	0.39
CH ₃	211	Pd	0.79
CH ₃	211	Pt	0.46
CH ₃	211	Re	-0.13
CH ₃	211	Rh	0.36
CH ₃	211	Ru	0.06
CH ₃ -CH ₂	211	Ag	4.63
CH ₃ -CH ₂	211	Au	4.05
CH ₃ -CH ₂	211	Cu	3.89
CH ₃ -CH ₂	211	Pd	3.07
CH ₃ -CH ₂	211	Pt	2.64
CH ₃ -CH ₂	211	Rh	2.39
CH ₃ -CH ₂	211	Ru	2.33
CH ₃ -CH ₃	211	Ag	4.53
CH ₃ -CH ₃	211	Au	4.41
CH ₃ -CH ₃	211	Cu	3.75
CH ₃ -CH ₃	211	Pt	3.39
CH ₃ -CH ₃	211	Rh	2.72
CH ₃ -CH ₃	211	Ru	2.42
CH ₃ CH ₂	211	Ag	2.30
CH ₃ CH ₂	211	Au	1.94
CH ₃ CH ₂	211	Cu	1.91
CH ₃ CH ₂	211	Pd	1.68
CH ₃ CH ₂	211	Pt	1.22
CH ₃ CH ₂	211	Rh	1.26

CH ₃ CH ₂	211	Ru	1.06
CH ₃ CH ₂ -H	211	Ag	3.04
CH ₃ CH ₂ -H	211	Au	2.59
CH ₃ CH ₂ -H	211	Cu	2.52
CH ₃ CH ₂ -H	211	Pd	2.24
CH ₃ CH ₂ -H	211	Pt	1.48
CH ₃ CH ₂ -H	211	Rh	1.45
CH ₃ CH ₂ -HO	211	Ag	3.54
CH ₃ CH ₂ -HO	211	Cu	2.75
CH ₃ CH ₂ -HO	211	Pd	2.88
CH ₃ CH ₂ -HO	211	Pt	2.50
CH ₃ CH ₂ -HO	211	Rh	1.90
CH ₃ CH ₂ -HOH	211	Ag	3.01
CH ₃ CH ₂ -HOH	211	Cu	2.62
CH ₃ CH ₂ -HOH	211	Pd	2.43
CH ₃ CH ₂ -HOH	211	Pt	2.07
CH ₃ CH ₂ -HOH	211	Rh	1.98
CH ₃ CH ₂ -OH	211	Cu	3.12
CH ₃ CH ₂ -OH	211	Pd	3.10
CH ₃ CH ₂ -OH	211	Pt	2.90
CH ₃ CH ₂ -OH	211	Rh	2.36
СНО	211	Ag	3.21
СНО	211	Au	2.88
СНО	211	Cu	2.75
СНО	211	Pd	1.84
СНО	211	Pt	1.79
СНО	211	Rh	1.83
СНО-О	211	Ag	5.36
CHO-O	211	Cu	4.13
CHO-O	211	Pd	4.79
CHO-O	211	Pt	4.15
CHO-O	211	Rh	3.20
СО	211	Ag	2.87
СО	211	Au	2.57
СО	211	Со	1.40
СО	211	Cu	2.28
СО	211	Ni	1.25
СО	211	Pd	1.22
СО	211	Pt	1.11
СО	211	Re	0.75
СО	211	Rh	1.07
СО	211	Ru	0.98

СО-Н	211	Ag	5.35
СО-Н	211	Cu	4.30
СО-Н	211	Pd	2.59
СО-Н	211	Pt	2.50
СО-Н	211	Rh	2.93
СО-НО	211	Ag	4.03
СО-НО	211	Cu	3.07
СО-НО	211	Pd	2.48
СО-НО	211	Pt	2.41
СО-НО	211	Rh	1.74
СО-НОН	211	Ag	3.51
СО-НОН	211	Cu	2.95
СО-НОН	211	Pd	3.37
СО-НОН	211	Pt	2.07
СО-НОН	211	Rh	1.85
СО-ОН	211	Ag	3.75
СО-ОН	211	Au	4.14
СО-ОН	211	Cu	2.97
СО-ОН	211	Pd	3.10
СО-ОН	211	Pt	2.80
СО-ОН	211	Rh	2.40
СО-ОН	211	Ru	2.27
СОН	211	Ag	4.59
СОН	211	Cu	3.57
СОН	211	Cu	3.55
СОН	211	Pd	1.90
СОН	211	Pt	1.92
СОН	211	Rh	1.94
СОО-Н	211	Ag	4.36
СОО-Н	211	Cu	3.88
СОО-Н	211	Pd	2.85
СОО-Н	211	Pt	2.62
СОО-Н	211	Rh	2.60
СООН	211	Cu	2.70
СООН	211	Cu	2.39
СООН	211	Pd	2.17
СООН	211	Pd	2.03
СООН	211	Pt	1.94
СООН	211	Pt	1.55
СООН	211	Rh	1.59
Н	211	Ag	0.24
Н	211	Au	0.17

Н	211	Cu	-0.09
Н	211	Ni	-0.39
Н	211	Pd	-0.40
Н	211	Pt	-0.35
Н	211	Re	-0.69
Н	211	Rh	-0.32
Н	211	Ru	-0.44
Н-СН	211	Ag	4.74
Н-СН	211	Au	4.58
Н-СН	211	Со	1.78
Н-СН	211	Cu	3.27
Н-СН	211	Ni	1.93
Н-СН	211	Pd	2.05
Н-СН	211	Pt	2.35
Н-СН	211	Re	0.60
Н-СН	211	Rh	1.54
Н-СН	211	Ru	1.07
H-CH ₂	211	Ag	3.52
H-CH ₂	211	Au	2.81
H-CH ₂	211	Со	0.99
H-CH ₂	211	Cu	2.50
H-CH ₂	211	Ni	1.41
H-CH ₂	211	Pd	1.53
H-CH ₂	211	Pt	0.94
H-CH ₂	211	Re	0.28
H-CH ₂	211	Rh	0.79
H-CH ₂	211	Ru	0.68
H-CH ₂ CH ₂	211	Ag	3.40
H-CH ₂ CH ₂	211	Au	3.37
H-CH ₂ CH ₂	211	Cu	2.80
H-CH ₂ CH ₂	211	Pd	2.28
H-CH ₂ CH ₂	211	Pt	1.99
H-CH ₂ CH ₂	211	Pt	1.99
H-CH ₂ CH ₂	211	Rh	1.61
H-CH ₂ CH ₂	211	Rh	1.61
H-CH ₃	211	Ag	2.23
H-CH ₃	211	Au	1.83
H-CH ₃	211	Со	0.86
H-CH ₃	211	Cu	1.70
H-CH ₃	211	Ni	1.13
H-CH ₃	211	Pd	0.83
H-CH ₃	211	Pt	0.73

H-CH ₃	211	Re	0.49
H-CH ₃	211	Rh	0.66
H-CH ₃	211	Ru	0.52
Н-СО	211	Ag	3.70
Н-СО	211	Au	3.30
Н-СО	211	Cu	3.11
Н-СО	211	Pd	1.97
Н-СО	211	Pt	1.85
Н-СО	211	Rh	1.82
Н-СОН	211	Cu	4.12
Н-СОН	211	Pd	2.43
Н-СОН	211	Pt	2.49
Н-СОН	211	Rh	2.54
H-COO	211	Ag	3.47
Н-СОО	211	Cu	2.89
H-COO	211	Pd	2.99
H-COO	211	Pt	2.87
Н-СОО	211	Rh	2.63
H-H	211	Ag	1.40
H-H	211	Au	1.15
H-H	211	Cu	0.78
H-H	211	Pd	0.12
H-H	211	Rh	0.00
Н-ОН	211	Au	1.82
Н-ОН	211	Cu	0.80
Н-ОН	211	Ni	0.35
Н-ОН	211	Pd	0.82
Н-ОН	211	Pt	0.72
Н-ОН	211	Rh	0.49
Н-ОН	211	Ru	-0.01
H ₂ O	211	Ag	-0.12
H ₂ O	211	Co	-0.37
H ₂ O	211	Cu	-0.18
H ₂ O	211	Ni	-0.32
H ₂ O	211	Pd	-0.18
H ₂ O	211	Pt	-0.14
H ₂ O	211	Re	-0.58
H ₂ O	211	Rh	-0.29
H ₂ O	211	Ru	-0.57
НСО	211	Ag	3.08
НСО	211	Au	2.88
НСО	211	Au	2.66

НСО	211	Cu	2.75
НСО	211	Cu	2.78
НСО	211	Pd	1.84
НСО	211	Pt	1.79
НСО	211	Pt	1.65
НСО	211	Rh	1.83
НСО	211	Rh	1.75
НСО	211	Ru	1.49
НСОО	211	Ag	2.02
НСОО	211	Cu	1.57
НСОО	211	Pd	1.99
НСОО	211	Pt	1.85
НСОО	211	Rh	1.18
НОН-СН	211	Ag	4.44
НОН-СН	211	Cu	3.30
НОН-СН	211	Pd	2.34
НОН-СН	211	Pt	2.04
НОН-СН	211	Rh	1.76
HOH-CH ₂	211	Ag	3.51
HOH-CH ₂	211	Cu	2.89
HOH-CH ₂	211	Pd	2.09
HOH-CH ₂	211	Pt	1.67
HOH-CH ₂	211	Rh	1.55
HOH-CH ₂ CH ₂	211	Ag	2.97
HOH-CH ₂ CH ₂	211	Cu	3.85
HOH-CH ₂ CH ₂	211	Pd	2.95
HOH-CH ₂ CH ₂	211	Pt	2.50
HOH-CH ₂ CH ₂	211	Rh	0.79
HOH-CH ₃	211	Ag	2.23
HOH-CH ₃	211	Cu	1.82
HOH-CH ₃	211	Pd	1.67
HOH-CH ₃	211	Pt	1.42
HOH-CH ₃	211	Rh	1.20
0	211	Ag	1.88
0	211	Au	2.60
0	211	Со	-0.15
0	211	Cu	0.99
0	211	Ni	0.13
0	211	Pd	1.50
0	211	Pt	1.26
0	211	Re	-1.50
0	211	Rh	0.16

0	211	Ru	-0.10
O-CO	211	Ag	5.10
O-CO	211	Au	5.45
O-CO	211	Со	2.73
O-CO	211	Cu	3.92
O-CO	211	Ni	2.77
O-CO	211	Pd	3.99
O-CO	211	Pt	3.53
O-CO	211	Rh	2.56
O-CO	211	Ru	2.35
О-Н	211	Ag	2.80
О-Н	211	Au	3.18
О-Н	211	Cu	1.63
О-Н	211	Ni	0.68
О-Н	211	Pd	1.75
О-Н	211	Pt	1.60
О-Н	211	Rh	0.73
О-Н	211	Ru	0.27
О-НОН	211	Ag	2.65
О-НОН	211	Cu	1.83
О-НОН	211	Pd	2.28
О-НОН	211	Pt	2.10
О-НОН	211	Rh	1.03
ОН	211	Ag	0.49
ОН	211	Au	0.94
ОН	211	Cu	-0.04
ОН	211	Ni	-0.50
ОН	211	Pd	0.34
ОН	211	Pt	0.36
ОН	211	Rh	-0.37
ОН	211	Ru	-0.69
OH-CH	211	Ag	4.97
OH-CH	211	Cu	3.43
OH-CH	211	Pd	2.78
OH-CH	211	Pt	2.47
OH-CH	211	Rh	1.69
OH-CH ₂	211	Ag	4.03
OH-CH ₂	211	Cu	3.01
OH-CH ₂	211	Pd	2.53
OH-CH ₂	211	Pt	2.10
OH-CH ₂	211	Rh	1.48
OH-CH ₂ CH ₂	211	Ag	3.49

OH-CH ₂ CH ₂	211	Cu	3.04
OH-CH ₂ CH ₂	211	Pd	3.36
OH-CH ₂ CH ₂	211	Pt	3.38
OH-CH ₂ CH ₂	211	Rh	2.75
OH-CH ₃	211	Ag	2.76
OH-CH ₂	211	Cu	1 94
OH-CH ₂	211	Pd	2.11
OH-CH ₂	211	Pt	1.85
	211	Dh	1.05
	211		1.13
OH-OH	211	Ag	1.98
OH-OH	211	Cu	1.07
OH-OH	211	Pd	1.72
OH-OH	211	Pt	1.76
OH-OH	211	Rh	0.50
C	211	Ni ₃ Fe	1.8
		(AA)	
0	211	Ni ₃ Fe	-0.2
	011	(AA)	1.4
C	211	N ₁₃ Fe	1.4
0	211	(AB)	0
0	211	$(\Delta \mathbf{R})$	0
С	211	Ni_2Co	17
0	211	Ni ₂ Co	0.1
C	211	Ni ₂ Cu	1.6
	211	(AA)	1.0
0	211	Ni ₃ Cu	0.2
		(ÅÅ)	
С	211	Ni ₃ Cu	1.1
		(AB)	
0	211	Ni ₃ Cu	0
~ ~		(AB)	
C	211	N ₁₃ Sn	2.7
	211	(AA)	0.9
0	211	$N_{13}Sn$	0.8
C	211	(AA) Ni Sn	1.8
	<u>~11</u>	(AB)	1.0
0	211	Ni ₃ Sn	0.2
	_	(AB)	
С	211	Ni ₃ Pd	2.1
		(AA)	
0	211	Ni ₃ Pd	0.3
~		(AA)	
C	211	Ni ₃ Pd	1.3
		(AB)	

0	211	Ni_3Pd	-0.7
С	211	Ni ₃ Pt	2.2
		(AA)	
0	211	Ni ₃ Pt	0.5
~		(AA)	
C	211	Ni ₃ Pt	1.5
0	211	(AB)	0.2
0	211	(AB)	0.3
С	211	Ni ₂ Rh	13
		(AA)	
0	211	Ni ₃ Rh	0.3
		(AA)	
C	211	Ni ₃ Rh	1.4
	011	(AB)	0.0
0	211	$N_{13}Kh$	0.2
C	211	(AD) NicRu	1.5
	211	(AA)	1.5
0	211	Ni ₃ Ru	0.2
		(AA)	
С	211	Pt ₃ Co	2.2
		(AA)	
0	211	Pt ₃ Co	0.8
	011	(AA)	2.4
C	211	Pt_3Co	2.4
0	211	Pt ₂ Co	14
	211	(AB)	1.7
С	211	Pt ₃ Cu	2.6
		(ÅA)	
0	211	Pt ₃ Cu	1.5
~		(AA)	
C	211	Pt_3Cu	2.2
0	211	(AB) Dt Cu	1.4
0	211	$(\Delta \mathbf{R})$	1.4
С	211	Pt_2Zn	3.2
		(AA)	
0	211	Pt ₃ Zn	1.3
		(AA)	
C	211	Pt ₃ Zn	2.2
	011	(AB)	1.4
	211	Pt_3Zn	1.4
С	211	(AB) Pt-Rh	17
	<u>11</u>	(AA)	1./
0	211	Pt ₃ Rh	0.7
-	-	.,	

		(AA)	
	211		1.0
C	211	Pt_3Kn	1.9
	011	(AB)	1.4
0	211	Pt ₃ Kh	1.4
	011	(AB)	2
C	211	Pt ₃ Pd	2
		(AA)	
0	211	Pt ₃ Pd	1.6
~		(AA)	
C	211	Pt ₃ Pd	1.9
		(AB)	
0	211	Pt ₃ Pd	1.3
		(AB)	
C	211	Pt ₃ Ag	2.4
		(AA)	
0	211	Pt ₃ Ag	1.9
		(AA)	
C	211	Pt ₃ Ag	1.8
		(AB)	
0	211	Pt ₃ Ag	1.3
		(AB)	
C	211	Pt ₃ Au	2.2
		(AA)	
0	211	Pt ₃ Au	1.8
		(AA)	
C	211	Pt ₃ Au	1.8
		(AB)	
0	211	Pt ₃ Au	1.3
		(AB)	
С	211	Pt ₃ Sn	4.2
		(AA)	
0	211	Pt ₃ Sn	1.7
		(AA)	
С	211	Pt ₃ Sn	2.5
		(AB)	
0	211	Pt ₃ Sn	1.4
		(AB)	

SI-6 References

1. Peterson, A. A., Abild-pedersen, F., Studt, F., Rossmeisl, J. and Nørskov, J. K. *Energy Environ. Sci.* **3**, 1311–1315 (2010).

2. Medford, A. J., Lausche, A. C., Abild-Pedersen, F., Temel, B., Schjødt, N. C., Nørskov, J. K. and Studt, F. *Top Catal.* **57**, 135–142 (2014).

3. Abild-Pedersen, F., Greeley, J., Studt, F., Rossmeisl, J., Munter, T. R., Moses, P. G., Skúlason, E., Bligaard, T. and Nørskov, J. K. *Phy. Rev. Lett.* **99**, 016105 (2007).

4. Wang, S., Petzold, V., Tripkovic, V., Kleis, J., Howalt, J. G., Skúlason, E., Fernández, E.M., Hvolbæk, B., Jones, G., Toftelund, A., Falsig, H., Björketun, M., Studt, F., Abild-Pedersen, F., Rossmeisl, J., Nørskov, J. K. and Bligaard, T. *Phys. Chem. Chem. Phys.* **13**, 20760–20765 (2011).

5. Jiang, T., Mowbray, D. J., Dobrin, S., Falsig, H., Hvolbæk, B., Bligaard, T. and Nørskov, J. K. *J. Phys. Chem. C* **113**, 10548–10553 (2009).

6. Falsig, H., Hvolbæk, B., Kristensen, I. S., Jiang, T., Christensen, C. H. and Nørskov. J. K. Angew. Chem. Int. Ed. 47, 4835 –4839 (2008).

7. Wang, S., Temel, B., Shen, J., Jones, G., Grabow, L. C., Studt, F., Bligaard, T., Abild-Pedersen, F., Christensen, C. H. and Nørskov, J. K. *Catal. Lett.* **141**, 370–373 (2011).

8. Studt, F., Abild-Pedersen, F, Wu, Q., Jensen, A. D., Temel, B., Grunwaldt, J. and

Nørskov, J. K. J. Catal, 293, 51-60 (2012).

9. Hummelshøj, J. S., Abild-Pedersen, F., Studt, F., Bliggard, T. and Nørskov, J. K. Angew. Chem. Int. Ed. 51, 272–274 (2012)

10. CatApp http://www.suncat.slac.stanford.edu/catapp.

11. Hansen, M. H., Nørskov, J. K. and Bligaard, T. J Catal. 374, 161–170 (2019).

12. Gao, J., Yip, J., Zhao, J., Yakobson, B.I. and Ding, F. J. Am. Chem. Soc. 133 (2011) 5009–5015.

13. Xu, Y., Lausche, A. C., Wang, S., Khan, T. S., Abild-Pedersen, F., Studt, F., Nørskov, J. K. and Bligaard, T. *New J. Phys.* **15**, 125021 (2013).