Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Bare laser-synthesized palladium-gold alloy nanoparticles as efficient electrocatalysts of glucose oxidation for energy conversion applications

Yaovi Holade^{a,b}, Seydou Hebié^{a,c}, Ksenia Maximova^d, Marc Sentis^{d,e}, Philippe Delaporte^{d,e}, Kouakou Boniface Kokoh^a, Teko W. Napporn^a* Andrei V. Kabashin^{d,e}*

^aUniversité de Poitiers, IC2MP UMR 7285 CNRS, 4, rue Michel Brunet B27, TSA 51106, 86073 Poitiers Cedex 9, France

^bPresent Address: Institut Européen des Membrane, IEM-UMR 5635, ENSCM, CNRS, Université de Montpellier, 300 Avenue du Prof. Emile Jeanbrau, 34090 Montpellier, Cedex 5, France

^cPresent address: Pilote Innovation, 212 Bd Pelletier, 78955 Carrières Sous-Poissy.

^dAix-Marseille Univ., CNRS, LP3, Campus de Luminy, Case 917, 13288, Marseille, France.

^eMEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409 Moscow, Russia.

Fig. S1 (a) CVs of Pd electrodes formed by laser-ablated NPs recorded at 20 mV s⁻¹ and 20 °C in: 0.1 M NaOH from 0.05-1.6 V vs. RHE (black), 0.1 M + 10 mM glucose from 0.3-1.5 V vs. RHE (blue) and 0.1 M + 10 mM glucose from 0.05-1.5 V vs. RHE (red). **(a)** Close-view (zoom) of the electrode potential window indicated by the dashed circle in (a). Note: Each curve was recorded by a new fresh electrode. From 0.05-1.6 V vs. RHE, CVs are not stable in 0.1 M NaOH since the absorption of hydrogen in the palladium crystal lattice is not fully reversible. However, in the presence of 10 mM glucose, a steady-state is reached within few cycles, since the adsorption of glucose further hinder hydrogen absorption process.

Fig. S2. Comparison of electrocatalytic performances of $Pd_{50}Au_{50}$ electrodes formed by laserablated NPs (blue) and NPs prepared by Bromide Anion Exchange based method (golden) recorded in 0.1 M NaOH at 20 mV s⁻¹ and 20 °C in the presence of 10 mM glucose.

Fig. S3 (a) Polarization curves at different scan rates of $Pd_{50}Au_{50}$ electrode materials recorded in 0.1 M NaOH + 10 mM D-(+)-glucose. **(b)** Plot of j_{peak} as function of square root of scan rate for peak current density.

Fig. S4. Plot of $log(j_{peak})$ as function of 1/T on Pd₅₀Au₅₀ electrode material. Note: Polarization curves were recorded in 0.1 M NaOH + 10 mM D-(+)-glucose at 20 mV s⁻¹.