Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supplementary Information for

One-pot efficient biosynthesis of (3*R*)-acetoin from pyruvate by two-enzyme cascade

Zhenzhen Cui, †^a Yufeng Mao, †^b Yujiao Zhao, ^a Meiyu Zheng, ^a Zhiwen Wang, *^a Hongwu Ma, * ^b Tao Chen *^a

^a Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

^b Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial
 Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.

* Corresponding author: zww@tju.edu.cn, ma_hw@tib.cas.cn and chentao@tju.edu.cn

[†] These authors contributed equally to this work.

Plasmids	Enzyme	Gene	NCBI-ProteinID	Sources
pET28a-alsS _{bsu}	bsu-ALS	$alsS_{bsu}$	NP_391482	Bacillus subtilis 168
pET28a- <i>alsS_{enc}</i>	enc-ALS	alsS _{enc}	YP_003613611	Enterobacter cloacae
				ATCC 13047
pET28a-alsS _{stc}	stc-ALS	$alsS_{stc}$	AAV62507	Streptococcus
				thermophiles CNRZ1066
pET28a-alsD _{bsu}	bsu-ALDC	$alsD_{bsu}$	NP_391481	Bacillus subtilis168
pET28a-alsD _{llx}	llx-ALDC	alsD _{llx}	AII12721	Lactococcus lactis
				NCDO 2118
pET28a-alsD _{stc}	stc-ALDC	alsD _{stc}	AAV62508	Streptococcus
				thermophilus CNRZ1066
pET28a-alsD _{enc}	enc-ALDC	alsD _{enc}	YP_003613612	Enterobacter cloacae
				ATCC 13047
pET28a-alsD _{alo}	glo-ALDC	$als D_{alo}$	ACD94444	Geobacter lovlevi SZ

Table S1 Plasmids and enzymes used in this study.

Table S2 The primers used in this study.

primers	Nucleotide sequence
alsS _{bsu} -F	GCACGGGATCCATGACAAAAGCAACAAAAGAAC
$alsS_{bsu}$ -R	CTGCCTCGAGCTAGAGAGCTTTCGTTTTCATGAG
alsD _{bsu} -F	GCACGGAATTCATGAAACGAGAAAGCAACATTCAAG
$alsD_{bsu}$ -R	GCTTGCTCGAGTTATTCAGGGCTTCCTTCAGTTG

Table S3 Comparison of five enzymes for acetoin formation.

Enzyme	FAD	Sources	Dominated biological function	
	requirement	Sources		
PDC (EC	Var	Bacteria, fungi,	aldehyde-forming	
Number:4.1.1.1) ¹⁻³	res	and plants		
		Bacteria, fungi,		
PDH (EC	Yes	and plants and	acetyl-transferring	
Number: 1.2.4.1)+0		animal		
POX (EC	Var	Destaria	a actual mha amhata farmain a	
Number:1.2.3.3) ⁷	Yes	Вастепа	acetyi phosphate-forming	
			α -acetolactate and α -Aceto-2-	
AHAS (EC	Var	Bacteria, fungi,	hydroxybutanoate forming for L-	
Number:2.2.1.6) ⁸	res	and plants	valine and L-isoleucine	
			biosynthesis.	
ALS (EC	No	Bacteria (natural	α -acetolactate-forming for diacetyl	
Number:2.2.1.6) ^{9, 10}	1NO	acetoin producer)	and acetoin synthesis	

Table S4 The 66 mesophiles or thermophiles species used in ALS and ALDC screening.

	sai, gus, gsk, gme, gur, glo, gbm, geo, gem, geb, gpi, gka, gtn, gth, gte,
KEGG org code list	gwc, afl, stc, stl, ste, stn, stu, stw, sthe, aac, aad, ctx, tco, tex, thx, tmt,
of 66 mesophiles or	tbo, twi, tki, toc, ttm, txy, ttm, tsh, tto, tnr, hor, tfu, ace, btp, tli, tma, tmm,
thermophiles species	tmi, tmw, tmq, tmx, tpt, trp, tna, tnp, thp, thz, thr, tle, tta, tme, taf, fno,
	fpe, tro.

_	••	
Initial pyruvate concentration (mM)	Conversion (%)	$\Delta rG'$ (kJ/mol)
3,000	1	-91.2±6.6
3,000	99	-34.2±6.6
4,500	1	-90.2±6.6
4,500	99	-33.2±6.6

Table S5 Gibbs energies of the reactions with different pyruvate conversions.

The website used in calculation of Gibbs energies is <u>http://equilibrator.weizmann.ac.il/</u>.

Conversion is the proportion of the molar mass of pyruvate converted to acetoin to initial pyruvate, for example, 1% conversion of 3000 mM pyruvate is the reaction containing the 2,970 mM pyruvate, 55 M (default value) H_2O , 15 mM acetoin and 30 mM CO_2 .

 $\Delta rG'$ is the change in Gibbs free energy with the change of substrate or product concentration due to a chemical reaction at pH 7.0 and ionic strength of 0.1 M.

Fig. S1 The effect of different temperatures on ALS activity.

Fig. S2 The effect of different pH on ALS activity. The buffer ranges of citrate buffer, phosphate buffer and Tris-HCl buffer are 3.0-6.6, 5.5-8.5 and 7.1-9.0 respectively.

Fig. S3 The effect of different temperatures on ALDC activity.

Fig. S4 The effect of different pH on ALDC activity. The buffer ranges of citrate buffer, phosphate buffer and Tris-HCl buffer are 3.0-6.6, 5.5-8.5 and 7.1-9.0 respectively.

Fig. S5 The stability of ALS at 35 °C, pH 7.0.

Fig. S6 The stability of ALDC at 35 °C, pH 6.5.

Fig. S7 The yield of (3R)-acetoin without or with supplement of bsu-ALDC at 4 h or 8 h.

Figure S8. Identification of (3*R*)-acetoin enantiomeric excess by GC-FID. A, (3*R*)-Acetoin and (3*S*)-acetoin enantiomeric standards, respectively. B, (3*R*)-Acetoin produced by enzymatic system in 20 mL buffer containing 2.83 M pyruvate, 10 mM MgCl₂, 0.2 mM TPP, 3.6 U/mL bsu-ALS and 3.6 U/mL bsu-ALDC at 35 °C, pH 6.5. C, (3*R*)-Acetoin produced by enzymatic system in 20 mL buffer containing 4.492 M pyruvate, 10 mM MgCl₂, 0.2 mM TPP, .5.4 U/mL bsu-ALS and 5.4 U/mL bsu-ALDC at 35 °C, pH 6.5.

Fig. S9 The image of acetoin liquid after rotary evaporation.

Fig. S10 The purity identification of purified acetoin by HPLC. A, Acetoin standard purchased from Tokyo Chemical Industry. The surface areas and retention time of acetoin standard (2.275 g/L) was 253957 mV*min and 21.020 min respectively. B, Acetoin obtained in our work. The surface areas and retention time of acetoin solution (4.669 g/L) was 512012 mV*min (4.587 g/L) and 21.012 min respectively.

Fig. S11 The activities of ALS and ALDC measured by HPLC methods. A, Time profile of consumed pyruvate mass in ALS assayed system. B, Time profile of produced acetoin mass in ALDC assayed system.

Reference

- 1. Y. G. Wu, A. K. Chang, P. F. Nixon, W. Li and R. G. Duggleby, *Eur. J. Biochem.*, 2000, 267, 6493-6500.
- 2. E. A. Sergienko and F. Jordan, *Biochemistry*, 2001, 40, 7369-7381.
- 3. M. A. Gabriel, H. Jabara and U. A. al-Khalidi, *The Biochemical journal*, 1971, **124**, 793-800.
- 4. J. D. Hillman, S. W. Andrews and A. L. Dzuback, *Infect. Immun.*, 1987, 55, 1399-1402.
- J. A. Montgomery, M. Jetté, S. Huot and C. Des Rosiers, *The Biochemical journal*, 1993, 294 (Pt 3), 727-733.
- 6. L. G. Baggetto and A. L. Lehninger, J. Biol. Chem., 1987, 262, 9535-9541.
- 7. B. L. Bertagnolli and L. P. Hager, Arch. Biochem. Biophys., 1993, 300, 364-371.
- 8. Y. Y. Chang and J. E. Cronan, Jr., J. Bacteriol., 1988, **170**, 3937-3945.
- 9. S. S. Pang, R. G. Duggleby, R. L. Schowen and L. W. Guddat, J. Biol. Chem., 2004, 279, 2242-2253.
- 10. F. C. Störmer, J. Biol. Chem., 1967, 242, 1756-1759.