Supplementary Information

Kinetic Analysis of the Asymmetric Hydrogenation of (E)-2,3-diphenylpropenoic acid over Cinchonidine Derivative-Modified Pd/C: Quinoline Ring Modification

Makoto Nakatsuji, Morifumi Fujita, Yasuaki Okamoto,* Takashi Sugimura*
Graduate School of Material Science, University of Hyogo, Kohto, Kamigori, Hyogo 678-1297, Japan
*E-mail: sugimura@sci.u-hyogo.ac.jp (TS), yokamoto@sci.u-hyogo.ac.jp (YO)

Derivations of Kinetic Equations

Kinetic equations in the text are presented in our previous study. ${ }^{1}$ The surface coverage of the modifier, for example, is shown by Eq. (S1), neglecting the term of adsorbed products because of the initial stage of the reaction concerned.
$\theta_{\mathrm{M}}=\mathrm{K}_{\mathrm{M}} \mathrm{C}_{\mathrm{M}} /\left(1+\mathrm{K}_{\mathrm{M}} \mathrm{C}_{\mathrm{M}}+\mathrm{K}_{\mathrm{S}} \mathrm{C}_{\mathrm{S}}+\mathrm{K}_{\mathrm{A}} \mathrm{C}_{\mathrm{A}}+\mathrm{K}_{\mathrm{H}}{ }^{1 / 2} \mathrm{P}_{\mathrm{H}}{ }^{1 / 2}\right)$
where θ, K, C, and P represent the surface coverage, equilibrium adsorption constant, concentration, and pressure, respectively. The subscripts, M, S, A, and H show the modifier, substrate, benzylamine, and hydrogen, respectively. Assuming the formation of the modifier-substrate 1:1 interaction complex, the surface coverage of the interaction complex $\left(\theta_{\mathrm{MS}}\right)$ can be simply expressed by Eq. (S2) instead of $\theta_{\mathrm{M}} \theta_{\mathrm{S}}$ used in other research groups. This is a novel kinetic model in the present study, leading to much simplified formulation.

$$
\theta_{\mathrm{MS}}=\theta_{\mathrm{M}}\left[\mathrm{~K}_{\mathrm{MS}} \mathrm{C}_{\mathrm{S}} /\left(1+\mathrm{K}_{\mathrm{MS}} \mathrm{C}_{\mathrm{S}}\right)\right]
$$

$$
\begin{equation*}
=\left[\mathrm{K}_{\mathrm{M}} \mathrm{C}_{\mathrm{M}} /\left(1+\mathrm{K}_{\mathrm{M}} \mathrm{C}_{\mathrm{M}}+\mathrm{K}_{\mathrm{S}} \mathrm{C}_{\mathrm{S}}+\mathrm{K}_{\mathrm{A}} \mathrm{C}_{\mathrm{A}}+\mathrm{K}_{\mathrm{H}}^{1 / 2} \mathrm{P}_{\mathrm{H}}^{1 / 2}\right)\right] \times\left[\mathrm{K}_{\mathrm{MS}} \mathrm{C}_{\mathrm{S}} /\left(1+\mathrm{K}_{\mathrm{MS}} \mathrm{C}_{\mathrm{S}}\right)\right] \tag{S2}
\end{equation*}
$$

where K_{MS} shows the equilibrium adsorption constant of the substrate on the preadsorbed modifier to form a modifier-substrate complex through hydrogen bonding. Thus, the initial reaction rates at the modified sites $\left(\mathrm{r}_{\mathrm{m}}\right)$ and unmodified sites $\left(\mathrm{r}_{\mathrm{u}}\right)$ can be described as follows, assuming that in the presence of BA the rate determining steps are the addition of a dissociatively adsorbed surface hydrogen atom to the modifier-substrate complex and adsorbed substrate for the enantioselective and racemic hydrogenations, respectively.

$$
\begin{align*}
\mathrm{r}_{\mathrm{m}} & =\mathrm{k}_{\mathrm{m}} \theta_{\mathrm{MS}} \theta_{\mathrm{H}} \\
& =\left[\mathrm{k}_{\mathrm{m}} \mathrm{~K}_{\mathrm{M}} \mathrm{C}_{\mathrm{M}}\left(\mathrm{~K}_{\mathrm{H}} \mathrm{P}_{\mathrm{H}}\right)^{1 / 2} /\left(1+\mathrm{K}_{\mathrm{M}} \mathrm{C}_{\mathrm{M}}+\mathrm{K}_{\mathrm{S}} \mathrm{C}_{\mathrm{S}}+\mathrm{K}_{\mathrm{A}} \mathrm{C}_{\mathrm{A}}+\mathrm{K}_{\mathrm{H}}{ }^{1 / 2} \mathrm{P}_{\mathrm{H}}^{1 / 2}\right)^{2}\right] \times\left[\mathrm{K}_{\mathrm{MS}} \mathrm{C}_{S} /\left(1+\mathrm{K}_{\mathrm{MS}} \mathrm{C}_{\mathrm{S}}\right)\right] \tag{S3}
\end{align*}
$$

$$
\begin{align*}
\mathrm{r}_{\mathrm{u}} & =\mathrm{k}_{\mathrm{u}} \theta_{\mathrm{S}} \theta_{\mathrm{H}} \\
& =\mathrm{k}_{\mathrm{u}} \mathrm{~K}_{\mathrm{S}} \mathrm{C}_{\mathrm{S}}\left(\mathrm{~K}_{\mathrm{H}} \mathrm{P}_{\mathrm{H}}\right)^{1 / 2} /\left(1+\mathrm{K}_{\mathrm{M}} \mathrm{C}_{\mathrm{M}}+\mathrm{K}_{\mathrm{S}} \mathrm{C}_{\mathrm{S}}+\mathrm{K}_{\mathrm{A}} \mathrm{C}_{\mathrm{A}}+\mathrm{K}_{\mathrm{H}}{ }^{1 / 2} \mathrm{P}_{\mathrm{H}}{ }^{1 / 2}\right)^{2} \tag{S4}
\end{align*}
$$

where k_{m} and k_{u} are the rate constants for the selective and nonselective hydrogenations, respectively. Thus, observed enantioselectivity, as represented by ee, can be described by Eq. (S6)

$$
\begin{align*}
\mathrm{r}_{\mathrm{m}} /\left(\mathrm{r}_{\mathrm{m}}+\mathrm{r}_{\mathrm{u}}\right) & =\left[\mathrm{k}_{\mathrm{m}} \mathrm{~K}_{\mathrm{M}} \mathrm{C}_{\mathrm{M}} \mathrm{~K}_{\mathrm{MS}} /\left(1+\mathrm{K}_{\mathrm{MS}} \mathrm{C}_{\mathrm{S}}\right)\right] /\left[\mathrm{k}_{\mathrm{m}} \mathrm{~K}_{\mathrm{M}} \mathrm{C}_{\mathrm{M}} \mathrm{~K}_{\mathrm{MS}} /\left(1+\mathrm{K}_{\mathrm{MS}} \mathrm{C}_{\mathrm{S}}\right)+\mathrm{k}_{\mathrm{u}} \mathrm{~K}_{\mathrm{S}}\right] \\
& =1 /\left(1+\beta / \mathrm{C}_{\mathrm{M}}\right) \tag{S5}
\end{align*}
$$

where $\beta=\left(k_{\mathrm{u}} / \mathrm{k}_{\mathrm{m}}\right)\left(\mathrm{K}_{\mathrm{S}} / \mathrm{K}_{\mathrm{M}}\right)\left(1+\mathrm{K}_{\mathrm{MS}} \mathrm{C}_{\mathrm{S}}\right) / \mathrm{K}_{\mathrm{MS}}$

$$
\begin{align*}
\mathrm{ee} & =i^{e} \mathrm{r}_{\mathrm{m}} /\left(\mathrm{r}_{\mathrm{m}}+\mathrm{r}_{\mathrm{u}}\right) \\
& =i^{e} /\left(1+\beta / \mathrm{C}_{\mathrm{M}}\right) \tag{S6}
\end{align*}
$$

where the intrinsic enantioselectivity, i^{e}, is defined by the enantiomeric excess (ee) of the hydrogenation at the modified sites; $i^{e}=\left|[S]_{\mathrm{m}}-[R]_{\mathrm{m}}\right| /\left([S]_{\mathrm{m}}+[R]_{\mathrm{m}}\right) . \quad[S]_{\mathrm{m}}$ and $[R]_{\mathrm{m}}$ represent the amounts of the S - and R-enantiomers, respectively.

The reaction rate r_{m} at the modified sites shows a maximum r_{m} * at a certain
concentration of the modifier, C_{M}. From $\mathrm{dr}_{\mathrm{m}} / \mathrm{dC}_{\mathrm{M}}=0$, we can obtain the concentration of the modifier $C_{M} *$ for $r_{m}{ }^{*}$.
$\mathrm{C}_{\mathrm{M}}{ }^{*}=\alpha / \mathrm{K}_{\mathrm{M}}$
where $\alpha=1+\mathrm{K}_{\mathrm{S}} \mathrm{C}_{\mathrm{S}}+\mathrm{K}_{\mathrm{A}} \mathrm{C}_{\mathrm{A}}+\mathrm{K}_{\mathrm{H}}{ }^{1 / 2} \mathrm{P}_{\mathrm{H}}{ }^{1 / 2}$
Equation (S7) predicts that $\mathrm{C}_{\mathrm{M}} *$ is inversely proportional to the adsorption constant of the modifier.

Reference

[1] B. Kim, M. Nakatsuji, T. Mameda, T. Kubota, M. Fujita, T. Sugimura, Y. Okamoto, Bull. Chem. Soc. Jpn., 2020, 93, 163-175.

Kinetic Analysis of CD-Ph, CD-6'OH, QN, and QN-Me

We applied Eq. (3) or Eq. (S6) to the analysis of the observed enantioselectivity in Figs 2 and 3 for the asymmetric hydrogenation of PCA over CD derivative-modified Pd / C to estimate the intrinsic enantioselectivity i^{e} and the kinetic parameter β in a logarithm scale.

Figure S 1 illustrates $\log \mathrm{ee} /\left(i^{e}-\right.$ ee) against $\log \mathrm{C}_{\mathrm{M}}$ for the modifier after choosing appropriate value of i^{e}.

Figure S1. Correlation between $\log \left[\mathrm{ee} /\left(i^{e}-\mathrm{ee}\right)\right]$ and $\log \mathrm{C}_{\mathrm{M}}$ for CD-Ph, CD-vinyl, QN, and $\mathrm{QN}-\mathrm{Me}$. The linear line in the plot is a hypothetical line with a slope of unity according to Eq. (3) or Eq. (S6). The values of i^{e} and $\log \beta$ thus obtained are listed in Table 2.

Synthesis and Chemical Data of CD-vinyl

CD-vinyl

CD-vinyl

Colorless solid: mp. 236.8-237.2 ${ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 8.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=17.9,10.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~m}, 1 \mathrm{H}), 5.59-5.61(\mathrm{~m}, 2 \mathrm{H}), 4.94-4.86(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{~m}, 1 \mathrm{H})$, 3.11-3.04 (m, 2H), 2.67-2.61 (m, 2H), $2.23(\mathrm{br}, 1 \mathrm{H}), 1.81-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.41(\mathrm{~m}, 2 \mathrm{H})$, HRMS (ESI) $\mathrm{m} / \mathrm{z}\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O} 321.20$ found 321.20.

