Appendix A: Supporting information (SI):

Oxygen vacancies enhanced photocatalytic removal of NO over N-doped TiO₂ catalyst

Xiaofang Tan^{a,b}, Guodong Qin^{a,b}, Gang Cheng^{a,b}, Xinjie Song^{a,b}, Xun Chen^a, Wenxin

Dai^{a,b}*, Xianzhi Fu^a

^a Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China

^b Key Laboratory of Eco-materials Advanced Technology (Fuzhou University), Fujian

Province University, Fuzhou, 350002, China

*Corresponding author: Wenxin Dai

Tel & Fax: +86-591-22865893

E-mail: daiwenxin@fzu.edu.cn

SI.1 Calculation of energy band

The Eg value was calculated by the Graetzel relation. The Graetzel relation:

 $Eg = 1240/\lambda_g (eV)$ (λ_g : Absorption wavelength threshold).

SI.2 XPS of TiO₂ sample

Fig.S1. High-resolution XPS spectra for TiO_2 sample of fresh, after reacted in dark or under visible irradiation: (a) Ti 2p and (b) O 1s.

Table S1 The	e High-resolution	XPS spectra area	a for TiO ₂ sam	ple of O 1s.
	6			

Name	Fresh sample(Area (P)	Reacted in dark (Area (P)	Reacted in light(Area (P)
	CPS.eV)	CPS.eV)	CPS.eV)
O _(L)	299486	296418	290087
O _(ad)	51918	40309	40358

The electron binding energy for Ti2p and O1s of TiO₂ sample exhibited an increasing tendency from fresh to after reacted in dark and then reacted under visible light irradiation, suggesting that TiO₂ sample could be oxidized by O₂ gas and then O₂ gas got electrons forming O_2^- species (O₂ + e⁻ \rightarrow O₂⁻). In addition, as shown in table 1, the peak at about 530.15 eV was assigned to the lattice oxygen species.

SI.3 O₂-TPD of TiO₂ sample

Fig. S2. The O₂-TPD-Ms results of TiO₂ catalyst after pre-adsorb O₂ and He under visible light or not. (catalyst dosage: 0.1 g He was injected during heating).

The O₂-TPD testing grape of TiO₂ samples showed a signal peaks at 225 0 C, ascribed to the produce of H₂O species in combination with the mass spectrum result.

SI.4 Assignment hydroxyl of FT-IR spectra

Table S2 Assigned hydroxyl of FT-IR spectra of adsorbing NO or NO+O₂ over TiO_2 and N- TiO_2 samples under visible light irradiation, respectively.

Sample bands	Terminal- OH	Bridged isolated - OH	Single coordinated -OH	Bridged - OH	doubly coordinated -OH
N-TiO ₂ (NO)	3730	3700	3670		3475
N-TiO ₂ (NO+O ₂)	3732 3716		3679, 3652	3612	3470