Supporting information

Ionic Liquid-Stabilized Vanadium Oxo-clusters Catalyzing Alkane Oxidation by Regulating Oligovanadates

Figure S1. XRD patterns of IL [TBA][Pic]-stabilized V oxo-clusters. a) V-OC@IL-0.5, b) V-OC@IL-1, c) V-OC@IL-2, d) Commercial V₂O₅.

Figure S2. TGA patterns of IL [TBA][Pic]-stabilized V oxo-clusters. a) V-OC@IL-0.5, b) V-OC@IL-1, c) V-OC@IL-2.

Figure S3. a) EPR signal intensity as a function of Vanadium (IV) concentration. The standard curve was achieved with the different concentrations (0.03 M–0.13 M) of VOSO₄ solution (V(IV)). b–d) EPR spectra of V-OC@IL-n (n=0.5,1,2) in H₂O at 298 K. The concentration of V (IV) in the oxo-cluster was quantified by external standard method.

Figure S4. Mass spectra of the different catalysts. a) V-OC@IL-1; b) V-OC@IL-2; c) oxidizing species of V-OC@IL-1; d) The fresh solution was obtained by mixing V_2O_5 and IL [TBA][Pic] in the presence of H_2O_2 (molar ratio IL/V=1:1), and then subjected to MS characterization.

	Mass		
Entry	(m/z)	Possible structure	
1	343.0	[V(O)(O-O)(pic) ₂] ⁻	
2	410.0	[V ₂ (O) ₃ (µ-O)(pic) ₂] ⁻	
3	524.8	[V ₃ (O) ₂ (O-O) ₂ (µ-O) ₂ (pic) ₂] ⁻	
4	540.8	[V ₃ (O)(O-O) ₃ (µ-O) ₂ (pic) ₂] ⁻	
5	631.1	[V ₃ (O) ₃ (O-O)(μ-O) ₂ (pic) ₃] ⁻	
6	441.9	[V ₂ (O) ₂ (O-O) (OH)(µ-O)(pic) ₂] ⁻ [M-H] ⁻	
7	458.9	[V ₂ (O)(O-O) ₂ (OH)(µ-O)(pic) ₂] ⁻	

Table S1. Possible structures of V oxo-cluster V-OC@IL-n (n=1 and 2) and the oxidizing species of V-OC@IL-1

Figure S5. The effect of initial amount of H_2O_2 on cyclohexane oxidation. Reaction conditions: cyclohexane (5.0 mmol), H_2O_2 (30% aqueous solution), V-OC@IL-1 (10 mg), CH₃CN (3.0 mL), 50 °C, 1 h.

Figure S6. The effect of reaction temperature on cyclohexane oxidation. Reaction conditions: cyclohexane (5.0 mmol), H_2O_2 (10.0 mmol, 30% aqueous solution), V-OC@IL-1 (10 mg), CH₃CN (3.0 mL), 1 h.

Figure S7. Hydrogen peroxide degradation curves over V_2O_5 and V-OC@IL-1. Reaction conditions: H_2O_2 (10.0 mmol, 30% aqueous solution), catalyst (0.1 mmol V), CH₃CN (3.0 mL), 50 °C.

Figure S8. a) FT-IR spectra of V-OC@IL-1 (top) and its oxidizing species (bottom);b) EPR spectrum of the oxidizing species of V-OC@IL-1.

Figure S9. ⁵¹V NMR spectra of vanadium species prepared from V_2O_5 under the action of H_2O_2 in the presence of ionic liquid: a) [TBA][OAc], b) [BMIM][OAc] and c) [BMIM][BF₄], respectively.

Figure S10. Oxidation of cyclohexane with hydrogen peroxide (2.22 M, 30 % aqueous solution) catalyzed by V-OC@IL-1 (0.004 M) in CH₃CN at 50 °C (the total initial content of water in the reaction mixture was constant = 9.7 M). Dependence of the initial rate of oxygenate formation, W_0 , on the initial concentration of cyclohexane is shown (curve 1). Linearization of curve 1 in coordinates [cyclohexane]₀⁻¹, W_0 is presented in line 2. Concentrations of cyclohexanone and cyclohexanol were determined after reduction of the aliquots with solid PPh₃.

Figure S11. Oxidation of cyclohexane (1.11 M) with hydrogen peroxide (30 % aqueous solution) catalyzed by V-OC@IL-1 (0.004 M) in CH₃CN at 50 °C (the total initial content of water in the reaction mixture was constant = 9.7 M). Dependence of the initial rate of oxygenate formation, W₀, on the initial concentration of H₂O₂ is shown (curve 1). Linearization of curve 1 in coordinates $[H_2O_2]_0^{-1}$, W₀ is presented in line 2. Concentrations of cyclohexanone and cyclohexanol were determined after reduction of the aliquots with solid PPh₃.

Figure S12. The effect of butylated hydroxytoluene (BHT) amount on the oxidation of cyclohexane. Reaction conditions: cyclohexane (5.0 mmol), H_2O_2 (10.0 mmol, 30% aqueous solution), V-OC@IL-1(0.4 mol%), CH₃CN (3.0 mL), 50 °C.

Figure S13. EPR spectrum (a) and ⁵¹V NMR spectrum (b) of the recovered V-OC@IL-1 catalyst.

Figure S14. GC calibration line for cyclohexane with dodecane as internal standard.

Figure S15. GC calibration line for cyclohexanol with dodecane as internal standard.

Figure S16. GC calibration line for cyclohexanone with dodecane as internal standard.

Figure S17. Chromatogram example of reaction solution. The cyclohexane and the products are identified as follows (retention times in parentheses): cyclohexane (2.11 min), cyclohexanol (2.74 min), cyclohexanone (2.82 min), dodecane (internal standard, 5.69 min).

-	5		
		Yield of	
Catalysts	Reaction conditions	KA oil (%)	Ref.
None or Co complex	160–170 °C, air	<5	S 1
(industrial production)			
$[\{Cu(Hdea)(H_2dea)\}_2(\mu_2 -$	50 °C, 5 h, H ₂ O ₂ , n(H ₂ O ₂)/	33.5	S2
H ₂ pma)]·3H ₂ O	n(cyclohexane) = 5		
[Cu(ĸONN'-HL)	50 °C, 3 h, H ₂ O ₂ , pyridine,	21.6	S 3
$(NO_3)(DMF)](NO_3) \cdot H_2$	$n(H_2O_2)/n(cyclohexane) = 5$		
[VO(OCH ₃)(5-Cl-quin) ₂]	50 °C, 1 h, H ₂ O ₂ , n(H ₂ O ₂)/	39	S4
	n(cyclohexane) = 4.3		
CuSBdiAP	70 °C, 3 h, H ₂ O ₂ , n(H ₂ O ₂)/	27.68	S5
	n(cyclohexane) = 1.5		
CeCr/NC-500	60 °C, 5 h, H ₂ O ₂ , n(H ₂ O ₂)/	53.9	S6
	n(cyclohexane) = 2		
Cl-PCFe	150 °C, 2 h, 1.0 MPa O ₂	12.1	S 7
Co-MgAlO	150 °C, 2 h, 0.6 MPa O ₂	7.5	S 8
AC	125 °C, 8 h, 1.5 MPa O ₂	5.3	S9
C ₆ MHImHSO ₄ -Co/ZSM-5	150 °C, 3 h, 1.5 MPa air	8.9	S10
V-OC@IL-1	50 °C, 1 h, H ₂ O ₂ , n(H ₂ O ₂)/	28.7	This
	n(cyclohexane) = 2		work

 Table S2. Comparison of the V-OC@IL-1 catalyst with those reported catalytic

 systems in the selective oxidation of cyclohexane.

References

- S1 X. Liu, M. Conte, Q. He, D. W. Knight, D. M. Murphy, S. H. Taylor, K. Whiston,
 C. J. Kiely and G. J. Hutchings, *Chem. Eur. J.*, 2017, 23, 11834–11842.
- S2 T. A. Fernandes, C. I. M. Santos, V. André, S. S. P. Dias, M. V. Kirillova and A. M. Kirillov, *Catal. Sci. Technol.*, 2016, 6, 4584–4593.
- S3 O. V. Nesterova, D. S. Nesterov, A. Krogul-Sobczak, M. F. C. G. da Silva and A. J. L. Pombeiro, *J. Mol. Catal. A: Chem.*, 2017, 426, 506–515.
- S4 I. Gryca, K. Czerwińska, B. Machura, A. Chrobok, L. S. Shul'pina, M. L. Kuznetsov, D. S. Nesterov, Y. N. Kozlov, A. J. L. Pombeiro, I. A. Varyan and G. B. Shul'pin, *Inorg. Chem.*, 2018, 57, 1824–1839.
- S5 A. A. Alshaheri, M. I. M. Tahir, M. B. A. Rahman, T. B. S. A. Ravoof and T. A. Saleh, *Chem. Eng. J.*, 2017, **327**, 423–430.
- S6 C. Xu, L. L. Jin, X. Z. Wang, Y. Q. Chen and L. Y. Dai, *Carbon*, 2020, 160, 287–297.
- S7 S. T. Wu, Y. R. He, C. H. Wang, C. M. Zhu, J. Shi, Z. Y. Chen, Y. Wan, F. Hao,
 W. Xiong, P. L. Liu and H. A. Luo, *ACS Appl. Mater. Interfaces*, 2020, 12, 26733–26745.
- S8 P. Liu, K. Y. You, R. J. Deng, Z. P. Chen, J. Jian, F. F. Zhao, P. L. Liu, Q. H. Ai and H. A. Luo, *Mol. Catal.*, 2019, 466, 130–137.
- S9 Y. Guo, T. Ying, X. H. Liu, B. F. Shi and Y. Q. Wang, *Mol. Catal.*, 2019, 479, 110487–110493.
- S10 Y. Hong, Y. X. Fang, X. T. Zhou, G. Du, J. J. Mai, D. L. Sun and Z. P. Shao, *Ind. Eng. Chem. Res.*, 2019, **58**, 19832–19838.