## **Supplementary Material:**

# Structure-guided evolution of carbonyl reductase for efficient biosynthesis of (*R*)-ethyl 2-hydroxy-4-phenylbutyrate

Wen Tang<sup>a</sup>, Lulu Chen<sup>a</sup> Jian Deng<sup>a</sup>, Yuyao Kuang<sup>a</sup>, Chao Chen<sup>b</sup>, Bo Yin<sup>c</sup>, Hualei

Wang<sup>a</sup>, Jinping Lin<sup>a,\*</sup>, Dongzhi Wei<sup>a</sup>

<sup>a</sup>State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, No.130 Meilong Road, Shanghai 200237, People's Republic of China.

<sup>b</sup>State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China.

<sup>c</sup> National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou215123, Jiangsu, People's Republic of China

\*Corresponding authors at: School of Biotechnology, East China University of Science and Technology, No. 130 Meilong Road, Xuhui District, Shanghai 200237, People's Republic of China. Tel.: +86 21 64251923; fax: +86 21 64250068.

E-mail addresses: jplin@ecust.edu.cn (J. Lin)

### **Experiments:**

#### Asymmetric reduction of ketone substrates

The reaction condition was described as following: 100 mM of substrate (2'-Fluoroacetophenone, 2'-Bromoacetophenone, 4'-Chloroacetophenone, 3',5'-Bis(trifluoromethyl)acetophenone) or 10 mM of substrate (Ethyl benzoylformate, 2oxo-4-phenylbutyric,(4S)-3-[5-(4-fluorophenyl)-1,5-dioxophentyl]-4-phenyl-1,3oxazolidin-2-one), NAD<sup>+</sup>(0.2 mM), D-glucose (1.5 equiv.), lyophilized *E. coli* cells coexpressing GDH<sub>E170K/Q252L</sub> and mut-W193L/C93I/I187L (27.5 g/L). The reactions were conducted for 24 h at 30°C. The conversion and stereoselectivity were determined by HPLC spectra according to previous studies [1-5].



**Fig. S1.** Enantioselectivity determination of (a) *Go*CR and (b) mut-W193L/C93I/I187L toward OPBE.



**Fig. S2.** <sup>1</sup>H NMR analysis of (*R*)-HPBE produced by mut-W193L/C93I/I187L .



**Fig. S3.** SDS-PAGE analysis of supernatant of the 193 site mutants. The expected molecular weight (MW) of mutants were around 28 kDa.



**Fig. S4.** SDS-PAGE analysis of supernatant of the 93 site mutants. The expected molecular weight (MW) of mutants were around 28 kDa.



**Fig. S5.** SDS-PAGE analysis of supernatant of the 187 site mutants and mut-W193L/C93I/I187L. The expected molecular weight (MW) of mutants were around 28 kDa.



Fig. S6. Lineweaver-Burk plots of GoCR and its variants.



**Fig. S7.** CD analysis of *Go*CR variants at different temperatures. (a) mut-W193L, (b) mut-W193L/C93I, (c) mut-W193L/I187L and (d) mut-W193L/C93I/I1187L.



Fig. S8. CD analysis of wild-type *Go*CR at different temperatures.



**Fig. S9.** Local residue interactions of wild-type *Go*CR predicted by the RING 2.0 web server. The hydrogen bonds, Van der Waals's interactions and pi-pi stack are indicated by blue, gray and orange lines, respectively.



**Fig. S10.** The SDS-PAGE analysis of co-expression system in *E. coli* cell harboring GDH<sub>E170K/Q252L</sub> and *Go*CR variants. Lane 1: mut-W193L, lane 2: mut-W193L/C93I, lane 3: mut-W193L/I187L and lane 4: mut-W193L/C93I/I187L.



Fig. S11. Thermostability of purified mut-W193L/C92I/I187L at 40°C.

**Table S1.** The primers for mutagenesis at 193 site, 93 site and 187 site.

| Primer name  | Primer sequence <sup>a</sup>                  |
|--------------|-----------------------------------------------|
| <b>193-F</b> | 5'- <u>NNK</u> GTCACGATCGACAAGCGCATGGCCGAA-3' |
| 193-R        | 5'-CATGTCGGTTCCGACAATGCCGGGGCAGTA-3'          |
| <b>93-</b> F | 5'-ATC <u>NNK</u> CAGGTCAAGCCGATCCTGG-3'      |
| 93-R         | 5'-CCCCGCATTGTTGACCATGATGTCC-3'               |
| <b>187-F</b> | 5'-GGC <u>NNK</u> GTCGGAACCGACATGCTTG-3'      |
| 187-R        | 5'-GGGGCAGTAGGAATTGACGGTAATG-3'               |

<sup>a</sup> NNK represented degenerate bases.

|  | Table S2. | The primers | s used in the co | onstruction of rec | ombinant plasmids. |
|--|-----------|-------------|------------------|--------------------|--------------------|
|--|-----------|-------------|------------------|--------------------|--------------------|

| Ent<br>ry | Primer<br>name | Primer sequence <sup>a</sup>                    |
|-----------|----------------|-------------------------------------------------|
| 1         | GDH-F          | 5'-G <u>GAATTC</u> ATGTATCCGGATTTAAAAGGAAAAG-3' |
| 2         | GDH-R          | 5'-CGAGCTCTTAACCGCGGCCTGCC-3'                   |
| 3         | mutant-F       | 5'-CG <u>GAATTC</u> ATGTCCCTTTCTGGAAAAATCG-3'   |
| 4         | mutant-R       | 5'-CCC <u>AAGCTT</u> TCAGCGGAAAACGAGACC-3'      |
| 5         | T7-GDH-F       | 5'-CCCAAGCTTTAATACGACTCACTATAGGGGAAT-3'         |
| 6         | T7-GDH-R       | 5'-CCTCGAGTTAACCGCGGCCTGCCTG-3'                 |

<sup>a</sup> The underlined bases are restriction sites.

| Entry | Mutants          | Distance 1ª<br>(Å) | Distance 2 <sup>b</sup><br>(Å) | Distance 3 <sup>c</sup><br>(Å) |
|-------|------------------|--------------------|--------------------------------|--------------------------------|
| 1     | GoCR             | 4.4                | 3.8                            | 5.5                            |
| 2     | W193L            | 3.8                | 3.2                            | 4.0                            |
| 3     | W193L/C93I       | 3.6                | 2.5                            | 3.3                            |
| 4     | W193L/I187L      | 3.5                | 2.9                            | 2.7                            |
| 5     | W193L/C93I/I187L | 3.3                | 2.5                            | 3.2                            |

Table S3. The distances between key residues of GoCR or its variants and OPBE.

<sup>a</sup> the distance between the stereogenic carbon atom of OPBE and a hydrogen from the C4 atom of the nicotinamide ring of NADH.

<sup>b</sup> the distance between the carbonyl oxygen atom of OPBE and the hydroxyl group of Tyr155.

<sup>c</sup> the distance between carbonyl oxygen atom of OPBE and hydroxyl groups of Ser142.

| OPBE<br>(M)             | Time<br>(h) | Conv.<br>(%) | Yield<br>(%) | ee<br>(%) | Biocatalyst                          | Refere<br>nces |
|-------------------------|-------------|--------------|--------------|-----------|--------------------------------------|----------------|
| 1.8                     | 14          | 100          | 84.2         | 99.2      | <i>E. coli</i> /mut-W193L/C93I/I187L | This<br>study  |
| <b>1.6</b> <sup>a</sup> | 12          | >99          |              | 99.5      | E. coli/IolS                         | [6]            |
| 1.0                     | 24.5        | 97.1         | 88.0         | >99       | Pichia pastoris/CgKR2                | [7]            |
| 1.0                     | 6           | >99          | 84           | >99       | E. coli/pCgKR2                       | [8]            |
| 0.4                     | 48          | >99          |              | 87.5      | Saccharomyces cerebisiae             | [9]            |
| 0.10                    | 16          |              | 82           | 97.4      | Candida krusei SW2026                | [10]           |
| 0.02                    | 12          |              | 92           | 99        | Candida boidinii CIOC21              | [11]           |
| 0.02                    | 24          | <100         |              | >99       | <i>E. coli</i> /PpADH                | [12]           |

**Table S4.** Comparison on asymmetric reduction of OPBE for the synthesis of (R)-HPBE

<sup>a</sup> feeding batch

| Entw  | Substrate                         |             | Specific activity (U/mg)   |                  |  |
|-------|-----------------------------------|-------------|----------------------------|------------------|--|
| Entry |                                   |             | GoCR <sup>[13]</sup> mut-W | /193L/C93I/I187L |  |
| 1     | Acetone                           | Ů           | $0.78 \pm 0.06$            | $0.94 \pm 0.23$  |  |
| 2     | 2-Butanone                        | <u>الْم</u> | 0.96 ± 0.12                | $1.93 \pm 0.44$  |  |
| 3     | 2-Pentanone                       | <u>الْم</u> | $7.48 \pm 0.25$            | $7.14 \pm 0.36$  |  |
| 4     | Acetophenone                      |             | $1.29 \pm 0.15$            | $5.21 \pm 0.32$  |  |
| 5     | Propiophenone                     |             | $1.76 \pm 0.18$            | $6.29 \pm 0.45$  |  |
| 6     | Butyrophenone                     |             | $2.44 \pm 0.14$            | 7.41 ± 1.27      |  |
| 7     | 1-Phenyl-2-propanone              |             | $3.53 \pm 0.23$            | $6.72 \pm 0.72$  |  |
| 8     | 4-Phenyl-2-butanone               |             | $8.89 \pm 0.41$            | $14.78 \pm 1.16$ |  |
| 9     | Ethyl 4-chloro-3-<br>oxobutanoate | CI JUNO     | $2.82 \pm 0.22$            | $4.63 \pm 0.42$  |  |
| 10    | Acetoin                           | ОН          | $4.34 \pm 0.14$            | $5.71 \pm 0.56$  |  |
| 11    | Ethyl pyruvate                    | Å<br>Å      | 6.7 ± 0.25                 | 7.0 ± 1.45       |  |
| 12    | 2, 3-Pentanedione                 | ů,          | $39.8 \pm 0.33$            | $47.3 \pm 2.76$  |  |
| 13    | 2, 3-Butanedione                  | ů,          | $121.2 \pm 0.36$           | 28.9 ± 1.93      |  |

 Table S5. Substrate spectrum of GoCR and mut-W193L/C93I/I187L toward various ketones.

<sup>a</sup> No measurable activity.

#### References

 J. Deng, K.L. Chen, Z.Q. Yao, J.P. Lin, D.Z. Wei, Efficient synthesis of optically active halogenated aryl alcohols at high substrate load using a recombinant carbonyl reductase from *Gluconobacter oxydans*, J. Mol. Catal. B-Enzym. 118 (2015) 1-7.

[2] K.L. Chen, K.F. Li, J. Deng, B.Q. Zhang, J.P. Lin, D.Z. Wei, Carbonyl reductase identification and development of whole-cell biotransformation for highly efficient synthesis of (*R*)-[3,5-bis(trifluoromethyl)phenyl] ethanol, Microb. Cell Fact. 15 (2016).

[3] S. Zhou, S.C. Zhang, D.Y. Lai, S.L. Zhang, Z.M. Chen, Biocatalytic characterization of a short-chain alcohol dehydrogenase with broad substrate specificity from thermophilic *Carboxydothermus hydrogenoformans*, Biotechnol. Lett. 35 (2013) 359-365.

[4] B.B. Sheng, Z.J. Zheng, M. Lv, H.W. Zhang, T. Qin, C. Gao, C.Q. Ma, P. Xu, Efficient production of (*R*)-2-hydroxy-4-phenylbutyric acid by using a coupled reconstructed D-Lactate dehydrogenase and formate dehydrogenase system, PLoS One 9 (2014) e104204-e104209.

[5] Z.Q. Liu, S.C. Dong, H.H. Yin, Y.P. Xue, X.L. Tang, X.J. Zhang, J.Y. He, Y.G. Zheng, Enzymatic synthesis of an ezetimibe intermediate using carbonyl reductase coupled with glucose dehydrogenase in an aqueous-organic solvent system, Bioresource Technol. 229 (2017) 26-32.

[6] Y. Ni, Y. Su, H. Li, J. Zhou, Z. Sun, Scalable biocatalytic synthesis of optically pure ethyl (*R*)-2hydroxy-4-phenylbutyrate using a recombinant *E. coli* with high catalyst yield, J. Biotechnol. 168 (2013) 493-498.

[7] X.L. Qian, J. Pan, N.D. Shen, X. Ju, J. Zhang, J.H. Xu, Efficient production of ethyl (R)-2-hydroxy4-phenylbutyrate using a cost-effective reductase expressed in *Pichia pastoris*, Biochem. Eng. J. 91 (2014) 72-77.

[8] N.D. Shen, Y. Ni, H.M. Ma, L.J. Wang, C.X. Li, G.W. Zheng, J. Zhang, J.H. Xu, Efficient synthesis of a chiral precursor for angiotensin-converting enzyme (ACE) inhibitors in high space-time yield by a new reductase without external cofactors, Org. Lett. 14 (2012) 1982-1985.

[9] Y.G. Shi, Y. Fang, H.P. Wu, F. Li, X.Q. Zuo, Improved production of ethyl-(R)-2-hydroxy-4-phenylbutyrate with pretreated *Saccharomyces cerevisiae* in water/organic solvent two-liquid phase systems, Biocatal. Biotransfor. 27 (2009) 211-218.

[10] W. Zhang, Y. Ni, Z.H. Sun, P. Zheng, W.Q. Lin, P. Zhu, N.F. Ju, Biocatalytic synthesis of ethyl (R)-2-hydroxy-4-phenylbutyrate with *Candida krusei* SW2026: A practical process for high enantiopurity and product titer, Process Biochem. 44 (2009) 1270-1275.

[11] Y. Chen, H. Lin, X. Xu, S. Xia, L. Wang, Preparation the key intermediate of angiotensin-converting enzyme (ACE) inhibitors: high enantioselective production of ethyl (*R*)-2-hydroxy-4-phenylbutyrate with *Candida boidinii* CIOC21, Adv. Synth. Catal. 350 (2008) 426-430.

[12] I. Lavandera, A. Kern, M. Schaffenberger, J. Gross, A. Glieder, S. de Wildeman, W. Kroutil, An exceptionally DMSO-tolerant alcohol dehydrogenase for the stereoselective reduction of ketones, ChemSusChem 1 (2008) 431-436.

[13] X. Liu, R. Chen, Z.W. Yang, J.L. Wang, J.P. Lin, D.Z. Wei, Characterization of a putative stereoselective oxidoreductase from gluconobacter oxydans and its application in producing ethyl (R)-4-chloro-3-hydroxybutanoate ester, Mol. Biotechnol. 56 (2014) 285-295.