Pd supported on Metal Mixed Oxide as an Efficient Catalyst for the Reductive Amination of Bio-derived Acetol to 2-Methylpiperazine

Jaime Mazarío^a, Zaher Raad^a, Patricia Concepción^a, Cristina Cerdá-Moreno^a and Marcelo E. Domine^{a,*}

^a Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain

* mdomine@itq.upv.es

SUPPORTING INFORMATION

Figure S2. EDS mapping of Ti-Zr-O_x support.

100nm

Figure S3. EDS mapping of Zr-Al-O_x support.

Figure S4. HR-STEM of a) Pd/TiO₂, b) Pd/Al₂O₃, c) Pd/ZrO₂ and d) Pd/MgO (after reduction).

Figure S5. Metal particle size distribution of (a) Pd/TiO_2 (fresh:156 particles, regenerated: 100 particles), (b) Pd/Al_2O_3 catalyst (fresh: 150 particles, regenerated: 100 particles), (c) Pd/ZrO_2 catalyst (fresh: 136 particles, regenerated: 145), (d) Pd/MgO catalyst (fresh: 130, regenerated: 145). (•): fresh, (•): regenerated after 7 h reaction at 90 °C, 13 bar of H₂, with 25wt% catalyst loading and using MeOH as solvent.

Figure S6. Metal particle size distribution of (a) $Pd/TiO_2-Al_2O_3$ (fresh: 118 particles, regenerated: 161 particles), (b) Pd/TiO_2-ZrO_2 catalyst (fresh: 106 particles, regenerated: 170 particles), (c) $Pd/ZrO_2-Al_2O_3$ catalyst (fresh: 139 particles, regenerated: 178). (•): fresh, (•): regenerated after 7 h reaction at 90 °C and 13 bar of H₂, with 25wt% catalyst loading and using MeOH as solvent, (•): regenerated after 7 h reaction at 90 °C and 13 bar of H₂, with 5wt% catalyst loading, and using MeOH as solvent.

Figure S7. Smoothed NH₃-TPD profiles of Pd-based materials.

Figure S8. Factor average chromatogram and mass spectra for reaction intermediate (cyclic diimine) obtained after 7 h with the following reaction conditions: 0.325 g acetol, 0.227 g ethylenediamine, 1.250 g MeOH, 0.056 g of Pd/Al₂O₃ (commercial) at 90 0 C and 13 bar of H₂, MS ((m/z), (relative intensity)): 96 (999), 95 (867), 42 (708), 69 (535), 28 (307), 54 (294), 41 (284), 55 (201), 68 (201), 39 (174); 96 M*

Figure S9. Factor average chromatogram and mass spectra for reaction intermediate (cyclic monoimine) obtained after 7 h with the following reaction conditions: 0.325 g acetol, 0.227 g ethylenediamine, 1.250 g MeOH, 0.056 g of Pd/Al₂O₃ (commercial) at 90 $^{\circ}$ C and 13 bar of H₂, MS ((m/z), (relative intensity)): 98 (999), 68 (782), 42 (642), 56 (515), 28 (344), 97 (323), 41 (321), 57 (287), 29 (214), 70 (183); 98 M*

Figure S10. Factor average chromatogram and mass spectra for reaction product (2-methylpiperazine) obtained after 7 h with the following reaction conditions: 0.325 g acetol, 0.227 g ethylenediamine, 1.250 g MeOH, 0.056 g of Pd/Al₂O₃ (commercial) at 90 $^{\circ}$ C and 13 bar of H₂, MS ((m/z), (relative intensity)): 85 (999), 44 (654), 56 (561), 57 (402), 42 (390), 43 (291), 58 (274), 28 (229), 100 (211), 30 (181); 100 M*

Figure S11. Reproducibility test with commercial Pd/Al₂O₃. <u>Reaction conditions</u>: 0.325 g acetol, 0.227 g ethylenediamine, 1.250 g MeOH, 0.056 g of Pd/Al₂O₃-commercial, at 13 bar of H₂, and 90 $^{\circ}$ C, during 7 h and with slow addition of acetol (100 µl/h).

Table S1. Sampling test.

Reaction time (h) –	Yield to 2-MP (mol.%)		
	А	В	С
3	57	54	57 ± 2
7	77	78	78 ± 4

A: One reaction with 4 sample collections

B: Two independent reactions (just one sample collection)

C: Average results (4 different repetitions per every reaction time, including those in this table) <u>Reaction conditions</u>: 0.325 g acetol, 0.227 g ethylenediamine, 1.250 g MeOH, 0.011 g of Pd/TiO₂-Al₂O₃ at 13 bar of H₂, and 90 ^oC, during 7 h and with slow addition of acetol (100 μ l/h).

Figure S12. Ethylenediamine conversion for a standard reaction and an experiment with slow acetol addition. <u>Reaction conditions:</u> 0.325 g acetol, 0.227 g ethylenediamine, 1.250 g MeOH, 0.056 g of Pd/Al₂O₃ (commercial), at 90 $^{\circ}$ C and 13 bar of H₂, during 7 h.

Figure S13. Comparison between the X-ray diffraction patterns of fresh Pd/MgO and Pd/MgO after the regeneration treatment.

Table S2. Results of elemental analysis (EA) of Pd supported on simple oxides after several reaction cycles.

Catalyst	C/N (wt%) ^a [after 2nd use]	C/N (wt%) ^b [after 3 rd use]	
Pd/ZrO ₂	0.5/1.5	0.5/1.7	
Pd/Al ₂ O ₃	0.5/1.5	0.5/1.6	

<u>Reaction conditions:</u> 0.325 g acetol, 0.227 g ethylenediamine, 0.056 g of catalyst at 90 0 C and 13 bar of H₂, during 7 h and with slow addition of acetol (100 µl/h).

Catalyst	Pd/Al ₂ O ₃	Pd/TiO ₂ -ZrO ₂	Pd/TiO ₂	Pd/ZrO ₂ .Al ₂ O ₃	Pd/TiO ₂ -Al ₂ O ₃	Pd/ZrO ₂	Thermal reaction
Amine Conversion ^a	85	86	89	91	92	91	n/d
Amine Conversion ^b	90	n/d	n/d	n/d	93	95	94
Selectivity to N-byproducts ^a	24	24	24	19	17	40	n/d
Selectivity to Imines ^a	47	41	25	20	14	22	n/d
Yield to 2-MP ^a	23	26	44	49	57	30	n/d

Table S3. Catalytic data for Pd supported catalysts for tests with 5wt.% catalyst loading.

<u>Reaction conditions</u>: 0.325 g acetol, 0.227 g ethylenediamine, 1.250 g MeOH, 0.011 g of catalyst at 90 0 C, during 3 h and with slow addition of acetol (100 µl/h). a: 13 bar of H₂, b: 13 bar of N₂.

NOTE:

One of the particularities of this reductive cyclo-amination is the fact that ethylenediamine instantly attacks acetol (nucleophilic addition) to yield either the corresponding imines or other nitrogenated by-products (mainly depending on the amount of acetol in the reaction media). A Scheme is presented below to illustrate this:

Scheme S1. Reaction pathway.

Figure S14. Kinetic comparison of Pd supported on simple and mixed metal oxides. <u>Reaction</u> <u>conditions:</u> 0.325 g acetol, 0.227 g ethylenediamine, 1.250 g MeOH, 0.056 g of catalyst, at 90 $^{\circ}$ C and 13 bar of H₂, during 7 h and with slow addition of acetol (100 µl/h).

Figure S15. Evolution of HD (m/z=3), H_2 (m/z=2) and D_2 (m/z=4) in the isotopic exchange H/D over Pd/Al₂O₃ (Black line corresponds to the temperature profile during measurement).

Figure S16. Evolution of HD (m/z=3), H_2 (m/z=2) and D_2 (m/z=4) in the isotopic exchange H/D over Pd/TiO₂-Al₂O₃ (Black line corresponds to the temperature profile during measurement).

Figure S17. Evolution of HD (m/z=3), H_2 (m/z=2) and D_2 (m/z=4) in the isotopic exchange H/D over Pd/ZrO₂-Al₂O₃ (Black line corresponds to the temperature profile during measurement).

Figure S18. Evolution of HD (m/z=3), H_2 (m/z=2) and D_2 (m/z=4) in the isotopic exchange H/D over Pd/Al₂O₃ (Black line corresponds to the temperature profile during measurement).

Figure S19. Kinetic comparison of Pd/TiO₂-Al₂O₃ with Pd/ZrO₂-Al₂O₃. <u>Reaction conditions</u>: 0.325 g acetol, 0.227 g ethylenediamine, 1.250 g MeOH, 0.011 g of catalyst, at 90 $^{\circ}$ C and 13 bar of H₂, during 7 h and with slow addition of acetol (100 µl/h). <u>Note</u>: Results correspond to the average values of three repetitions per point, with error bars calculated as the internal standard deviation.

Solvent	C/N (wt%)ª [after 1st use]	C/N (wt%) ^b [after regeneration]
H ₂ O	3.1/1.3	0.4/0.0
МеОН	5.1/2.5	0.1/0.0

Table S4. Results of elemental analysis (EA) of $Pd/TiO_2-Al_2O_3$ after reaction under optimum conditions and after regeneration.

<u>Reaction conditions:</u> 0.325 g acetol, 0.227 g ethylenediamine, 0.011 g of Pd/TiO₂-Al₂O₃ at 90 0 C and 13 bar of H₂, during 7 h and with slow addition of acetol (100 µl/h).