Pd Catalysts Supported on Dual-Pore Monolithic Silica Beads

for Chemoselective Hydrogenation Under Batch and Flow

Reaction Conditions

Tsuyoshi Yamada, ${ }^{a}$ Aya Ogawa, ${ }^{a}$ Hayato Masuda, ${ }^{a}$ Wataru Teranishi, ${ }^{a}$ Akiko Fujii, ${ }^{\text {a }}$ Kwihwan Park, ${ }^{\text {a }}$ Yosuke Ashikari, ${ }^{\text {b }}$ Noriyuki Tomiyasu, ${ }^{\text {c }}$ Tomohiro Ichikawa, ${ }^{\text {a }}$ Riichi Miyamoto, ${ }^{\text {d }}$ Hongzhi Bai, ${ }^{\text {d }}$ Kiyoshi Matsuyama, ${ }^{e}$ Aiichiro Nagaki, ${ }^{\text {b }}$ and Hironao Sajiki* ${ }^{\text {a }}$
${ }^{\text {a }}$ Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
Fax: (+81)-58-230-8109; phone: (+81)-58-230-8109; e-mail: sajiki@gifu-pu.ac.jp
${ }^{\mathrm{b}}$ Department of Synthetic and Biological Chemistry Graduate School of Engineering, Kyoto University Nishikyo-ku, Kyoto, 615-8510, Japan
Department of Biochemistry and Applied Chemistry, National Institute of Technology, Kurume College, 1-1-1 Komorino, Kurume, Fukuoka 830-8555, Japan
${ }^{\mathrm{d}}$ DPS Inc., 1-39-2215, Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
${ }^{\mathrm{e}}$ Department of Life, Environment and Applied Chemistry, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295, Japan

Contents

1. General
2. Original data before calculating the average shown in Table 1
3. XPS spectra of $5 \% \mathrm{Pd} / \mathbf{S M}$ before and after the reaction
4. General procedures for hydrogenation
5. Spectroscopic data of products
6. Reuse test of $\mathbf{5 \%} \mathbf{P d} / \mathrm{SM}$ and $\mathbf{0 . 2 5 \%} \mathrm{Pd} / \mathrm{SM}(\mathrm{sc})$ for the hydrogenation of trans-stilbene
7. References
8. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of products

1. General

$\mathrm{Pd}(\mathrm{OAc})_{2}$ were obtained from N.E. Chemcat Corporation, Japan. Dual-pore monolithic silica beads was obtained from SnG Inc., Japan. Other reagents were obtained from commercial sources and used without further purification unless otherwise noted. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded by a JEOL ECZ-400 $\left({ }^{1} \mathrm{H}: 400 \mathrm{MHz},{ }^{13} \mathrm{C}: 100 \mathrm{MHz}\right)$, or ECA-500 spectrometer $\left({ }^{1} \mathrm{H}: 500 \mathrm{MHz},{ }^{13} \mathrm{C}\right.$: 125 MHz). Chemical shifts (δ) are indicated in ppm and are internally referenced (0.00 ppm for tetramethylsilane for ${ }^{1} \mathrm{H}$ NMR, 7.26 ppm for CDCl_{3} for ${ }^{1} \mathrm{H} \mathrm{NMR}$, and 77.0 ppm for CDCl_{3} for ${ }^{13} \mathrm{C}$ NMR. Transmission electron microscopy (TEM) were measured by JEOL JEM-2010. The solid structures of the samples were measured by X-ray diffraction (XRD) using $\mathrm{Cu}-\mathrm{K} \alpha$ radiation (PANalytical, Empyrean). X-ray photoelectron spectroscopy (XPS) of $5 \% \mathrm{Pd} / \mathrm{SM}$ was measured by ULVAC Quantera-SXM-GC. The Pd content of the filtrates of the $5 \% \mathrm{Pd} / \mathrm{SM}$ was measured by Atomic Absorption Spectrometry (SHIMADZU AA-7000).

2. Original data before calculating the average shown in Table 1

${ }^{\mathrm{a}}$ Suspension of diphenylacetylene ($1,0.25 \mathrm{mmol}, 44.6 \mathrm{mg}$) and $0.1 \mathrm{~mol} \%$ of $5 \% \mathrm{Pd} / \mathrm{SM}(0.53 \mathrm{mg}$, $2.5 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ were stirred at $25^{\circ} \mathrm{C}$ under hydrogen atmosphere.
2020072901.spe

2020072902.spe

Position (eV)	342.9	341.0	337.7	335.7
Species	Pd(II) 3d3	$\mathrm{Pd}(0) 3 \mathrm{~d} 3$	$\mathrm{Pd}(\mathrm{II})$ 3d5	$\mathrm{Pd}(0) 3 \mathrm{~d} 5$
$5 \% \mathrm{Pd} / \mathrm{SM}$ before reaction (Area\%)	11.4	35.3	12.9	40.4
$5 \% \mathrm{Pd} / \mathrm{SM}$ after reaction (Area\%)	9.0	38.7	11.3	40.5

4. General procedures for hydrogenation

General procedure for chemoselective hydrogenation catalysed by 5\% Pd/SM- and $\mathbf{0 . 2 5 \%}$ Pd/SM(sc) under batch reaction conditions

A mixture of a substrate $(0.25 \mathrm{mmol})$ and $0.1 \mathrm{~mol} \%$ of $5 \% \mathrm{Pd} / \mathrm{SM}(0.53 \mathrm{mg}, 0.25 \mu \mathrm{~mol})$ or 0.05 $\mathrm{mol} \%$ of $0.25 \% \mathrm{Pd} / \mathrm{SM}(\mathrm{sc})(5.3 \mathrm{mg}, 125 \mathrm{nmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was stirred at $25{ }^{\circ} \mathrm{C}$ in a test tube equipped with a H_{2} balloon. The reaction was monitored continuously using thin-layer chromatography. After a specific time, the mixture was filtered through a membrane filter (pore size: $0.45 \mu \mathrm{~m})$. The catalyst on the filter was washed with EtOAc or diethyl ether ($5 \mathrm{~mL} \times 3$). The combined filtrates were concentrated in vacuo to afford the corresponding analytically pure product. If necessary, the product was further purified using silica gel column chromatography (hexane/EtOAc).

General procedure for chemoselective hydrogenation catalysed by $\mathbf{5 \%} \mathbf{P d} / \mathbf{S M}$ under flow conditions

A solution of substrate in $\mathrm{MeOH}(0.1$ or 0.05 M$)$ was pumped at $0.1 \mathrm{~mL} / \mathrm{min}$ into a catalyst-packed cartridge [$5 \% \mathrm{Pd} / \mathrm{SM}(100 \mathrm{mg}) ; \varphi 4.6 \times 50 \mathrm{~mm}$, SUS-316] along with 14 bar hydrogen gas at either $25^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$, after MeOH and hydrogen gas had been flowed through the cartridge under the same conditions for approximately 10 min . The entire reaction mixture was collected and concentrated in vacuo to afford the corresponding analytically pure product.

General procedure for Pd/SM(sc)-catalysed hydrogenation of prenol under flow conditions

Prenol (3-methyl-2-buten-1-ol) or its ethanol solution (3.06 or $4.71 \mathrm{~mol} / \mathrm{L}$) was pumped at 1.0 $\mathrm{mL} / \mathrm{min}$ into a cartridge $[\varphi 4.6 \times 100 \mathrm{~mm}$, stainless steel] filled with $0.2 \% \mathrm{Pd} / \mathrm{SM}(\mathrm{sc})$ along with hydrogen gas at a flow rate of 140,210 , or $280 \mathrm{~mL} / \mathrm{min}$ at $120^{\circ} \mathrm{C}$ with or without a back pressure of 3.45 MPa . The reaction solution was analysed by gas chromatography to determine the conversion of prenol using commercial chemicals as authentic samples.

5. Spectroscopic data of products

The spectral data of the product were identical to those in the literature.

1,2-Diphenylethane (CAS Registry Number: 103-29-7) ${ }^{1}$ (Table 2, Entries 1 and 2; Table 4, Entry 2)

1,2-Diphenylethane was obtained in 99% yield ($44.6 \mathrm{mg}, 247 \mu \mathrm{~mol}$; colorless solid) from diphenylacetylene ($45 \mathrm{mg}, 250 \mu \mathrm{~mol}$) by using catalyst $\mathbf{A}(0.53 \mathrm{mg}, 0.25 \mu \mathrm{~mol})$ in Table 2, Entry 1. 1,2-Diphenylethane was obtained in 98% yield ($44.7 \mathrm{mg}, 245 \mu \mathrm{~mol}$) from diphenylacetylene (45 mg , $250 \mu \mathrm{~mol})$ by using catalyst $\mathbf{B}(5.3 \mathrm{mg}, 125 \mathrm{nmol})$ in Table 2, Entry 2.
1,2-Diphenylethane was obtained in 96% yield $(2.52 \mathrm{~g}, 13.8 \mathrm{mmol})$ from diphenylacetylene (2.57 g , $14.4 \mathrm{mmol})$ by using catalyst $\mathbf{A}(100 \mathrm{mg}, 47.0 \mu \mathrm{~mol})$ in Table 4 , Entry 2.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 6 \mathrm{H}), 2.91(\mathrm{~s}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.8,128.4,128.3,125.9,37.9$.

4-Aminoethylbenzene (CAS Registry Number: 589-16-2) ${ }^{2}$ (Table 2, Entries 3, 4, 5 and 6)

4-Aminoethylbenzene was obtained in 88% yield $(26.7 \mathrm{mg}, 220 \mu \mathrm{~mol}$: yellow oil) from 1-azido-4-ethylbenzene $(36.8 \mathrm{mg}, 250 \mu \mathrm{~mol})$ by using catalyst $\mathbf{A}(0.53 \mathrm{mg}, 0.25 \mu \mathrm{~mol})$ in Table 2 , Entry 3.

4-Aminoethylbenzene was obtained in quantitative yield from 1-azido-4-ethylbenzene ($36.8 \mathrm{mg}, 250$ $\mu \mathrm{mol})$ by using catalyst $\mathbf{B}(5.3 \mathrm{mg}, 125 \mathrm{nmol})$ in Table 2, Entry 4.
4-Aminoethylbenzene was obtained in quantitative yield (31.0 $\mathrm{mg}, 250 \mu \mathrm{~mol}$) from 4-ethylnitrobenzene ($37.8 \mathrm{mg}, 250 \mu \mathrm{~mol}$) by using catalyst $\mathbf{A}(0.53 \mathrm{mg}, 0.25 \mu \mathrm{~mol})$ in Table 2, Entry 5.

4-Aminoethylbenzene was obtained in quantitative yield (31.0 $\mathrm{mg}, 250 \mu \mathrm{~mol}$) from 4-ethylnitrobenzene $(37.8 \mathrm{mg}, 250 \mu \mathrm{~mol})$ by using catalyst $\mathbf{B}(15.9 \mathrm{mg}, 0.38 \mu \mathrm{~mol})$ in Table 2, entry 6.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.52$ (brs, 2 H), 2.54 $(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.18(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.0,134.4,128.5$, 115.2, 27.9, 15.9.

N-phenyl- N-propylcarbamate (CAS Registry Number: 634917-15-0) ${ }^{3}$ (Table 2, Entry 7; Table

4, Entry 3)

N-phenyl- N-propylcarbamate was obtained in 92% yield ($61.9 \mathrm{mg}, 230 \mu \mathrm{~mol}$; yellow oil) from N-allyl- N-benzyloxycarbonylaniline $(66.8 \mathrm{mg}, 250 \mu \mathrm{~mol})$ and THF $(1 \mathrm{~mL})$ by using catalyst $\mathbf{A}(0.53$ $\mathrm{mg}, 0.25 \mu \mathrm{~mol})$ in Table 2, Entry 7.
N-phenyl- N-propylcarbamate was obtained in quantitative yield ($970 \mathrm{mg}, 3.6 \mathrm{mmol}$) from N-allyl- N-benzyloxycarbonylaniline ($962 \mathrm{mg}, 3.6 \mathrm{mmol}$) by using catalyst $\mathbf{A}(100 \mathrm{mg}, 47.0 \mu \mathrm{~mol})$ in Table 4, Entry 3.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.19(\mathrm{~m}, 10 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 3.64(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.55$ (sext, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.4,141.8,136.7,128.8$, 128.3, 127.7, 127.3, 126.5, 66.9, 52.0, 21.4, 11.0.

N-Propylaniline (CAS Registry Number: 622-80-0) ${ }^{4}$ (Table 2, Entries 8 and 9)

N-Propylaniline was obtained in quantitative yield ($33.8 \mathrm{mg}, 250 \mu \mathrm{~mol}$; blown oil) from N-allyl- N-benzyloxycarbonylaniline ($66.8 \mathrm{mg}, 250 \mu \mathrm{~mol}$) by using catalyst $\mathbf{A}(5.3 \mathrm{mg}, 2.5 \mu \mathrm{~mol})$ in Table 2, Entry 8.
N-Propylaniline was obtained in 85% yield $(28.7 \quad \mathrm{mg}, 213 \mu \mathrm{~mol})$ from N-allyl- N-benzyloxycarbonylaniline ($66.8 \mathrm{mg}, 250 \mu \mathrm{~mol}$) by using catalyst $\mathbf{B}(15.9 \mathrm{mg}, 0.38 \mu \mathrm{~mol})$ in Table 2, Entry 9.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{t}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.63(\mathrm{brs}, 1 \mathrm{H}), 3.08(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.5,129.2,117.0,112.6,45.7,22.7,11.6$. 4)

Phenethylamine was obtained in 75% yield $(25.4 \mathrm{mg}, 188 \mu \mathrm{~mol}$; colorless oil) from benzyl phenethylcarbamate ($63.8 \mathrm{mg}, 250 \mu \mathrm{~mol}$) by using catalyst $\mathbf{B}(5.3 \mathrm{mg}, 0.125 \mu \mathrm{~mol})$ in Table 2, Entry 11.

Phenethylamine was obtained in 85% yield ($185 \mathrm{mg}, 1.53 \mathrm{mmol}$) from phenethyl azide ($265 \mathrm{mg}, 1.8$ mmol) by using catalyst $\mathbf{A}(100 \mathrm{mg}, 47.0 \mu \mathrm{~mol})$ in Table 4, Entry 4.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.18(\mathrm{~m}, 5 \mathrm{H}), 2.95(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.24(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.7,128.7,128.3,126.0,43.5,40.0$.

Benzoic acid (CAS Registry Number: 65-85-0) ${ }^{6}$ (Table 2, Entries 12 and 13)

Benzoic acid was obtained in 91% yield ($27.8 \mathrm{mg}, 228 \mu \mathrm{~mol}$; colorless solid) from benzyl benzoate ($53.1 \mathrm{mg}, 250 \mu \mathrm{~mol})$ by using catalyst $\mathbf{A}(0.53 \mathrm{mg}, 0.25 \mu \mathrm{~mol})$ in Table 2, Entry 13.
Benzoic acid was obtained in quantitative yield ($30.1 \mathrm{mg}, 246 \mu \mathrm{~mol}$) from benzyl benzoate $(53.1 \mathrm{mg}$, $250 \mu \mathrm{~mol})$ by using catalyst $\mathbf{B}(20.1 \mathrm{mg}, 0.5 \mu \mathrm{~mol})$ in Table 2, Entry 13.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.6(\mathrm{brs}, 1 \mathrm{H}), 8.13(\mathrm{dd}, J=1.0,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.49 (t, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1$, 133.8, 130.2, 129.3, 128.5.

Benzyl benzenepropanoate (CAS Registry Number: 22767-96-0) ${ }^{7}$ (Table 2, Entry 14)

Benzyl benzenepropanoate was obtained in quantitative yield ($60.1 \mathrm{mg}, 250 \mu \mathrm{~mol}$; colorless oil) from cinnamic acid benzyl ester ($59.6 \mathrm{mg}, 250 \mu \mathrm{~mol}$) by using catalyst $\mathbf{A}(0.53 \mathrm{mg}, 0.25 \mu \mathrm{~mol})$ in Table 2, Entry 14.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.16(\mathrm{~m}, 10 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 2.96(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.7,140.4,135.9,128.5,128.5,128.3,128.2,126.2$, 66.3, 35.9, 30.9.

Benzenepropanoic acid (CAS Registry Number: 501-52-0) ${ }^{8}$ (Table 2, Entry 15)

Benzenepropanoic acid was obtained in 96% yield (36.0 mg , $240 \mu \mathrm{~mol}$; colorless oil) from cinnamic acid benzyl ester ($59.6 \mathrm{mg}, 250 \mu \mathrm{~mol}$) by using catalyst $\mathbf{B}(20.1 \mathrm{mg}, 0.5 \mu \mathrm{~mol})$ in Table 2, Entry 15 . ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.84$ (brs, 1H) $7.31-7.19$ (m, 5H), $2.95(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 140.1,128.5,128.2,126.4,65.9,35.5,30.5$.

Phenol (CAS Registry Number: 108-95-2) ${ }^{9}$ (Table 2, Entries 16 and 17)

Phenol was obtained in 94% yield ($22.1 \mathrm{mg}, 235 \mu \mathrm{~mol}$; colorless solid) from benzyl phenyl ether $(46.1 \mathrm{mg}, 250 \mu \mathrm{~mol})$ by using catalyst $\mathbf{B}(5.3 \mathrm{mg}, 0.125 \mu \mathrm{~mol})$ and EtOAc as a solvent in Table 2, Entry 17.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.83(\mathrm{dd}, J=$ $8.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.01(\mathrm{brs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.2,129.7,120.8,115.3$.

1-Decanol (CAS Registry Number: 112-30-1) ${ }^{10}$ (Table 2, Entries 18 and 19)

1-Decanol was obtained in 75% yield $(29.7 \mathrm{mg}, \quad 188 \mu \mathrm{~mol}$; colorless oil) from ((decyloxy)methyl)benzene ($62.1 \mathrm{mg}, 250 \mu \mathrm{~mol}$) by using catalyst $\mathbf{B}(5.3 \mathrm{mg}, 0.125 \mu \mathrm{~mol})$ in Table 2, Entry 19.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.64-3.60(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{brs}, 1 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.27(\mathrm{~m}$, $14 \mathrm{H}), 0.88(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 62.9,32.7,31.8,29.6,29.5,29.4,29.3$, 25.7, 22.6, 14.0.

Naphthalene (CAS Registry Number: 91-20-3) ${ }^{11}$ (Table 2, Entries 20, 21, 22 and 23)

Naphthalene was obtained in quantitative yield ($32.0 \mathrm{mg}, 250 \mu \mathrm{~mol}$; colorless solid) from bromonaphthalene ($51.8 \mathrm{mg}, 250 \mu \mathrm{~mol}$) by using catalyst $\mathbf{B}(5.3 \mathrm{mg}, 0.125 \mu \mathrm{~mol})$ in Table 2, Entry 21.

Naphthalene was obtained in 72% yield $(23.1 \mathrm{mg}, 180 \mu \mathrm{~mol})$ from chloronaphthalene $(40.7 \mathrm{mg}, 250$ $\mu \mathrm{mol})$ by using catalyst $\mathbf{B}(21.2 \mathrm{mg}, 0.5 \mu \mathrm{~mol})$ and $\mathrm{Et}_{3} \mathrm{~N}(27.8 \mathrm{mg}, 275 \mu \mathrm{~mol})$ in Table 2, Entry 23. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) §133.4, 127.9, 125.8.

Pentylbenzene (CAS Registry Number: 495-40-9) ${ }^{12}$ (Table 2, Entries 24 and 25)

Pentylbenzene was obtained in 78% yield ($28.9 \mathrm{mg}, 195 \mu \mathrm{~mol}$; colorless oil) from valerophenone ($40.6 \mathrm{mg}, 250 \mu \mathrm{~mol}$) by using catalyst $\mathbf{B}(5.3 \mathrm{mg}, 0.125 \mu \mathrm{~mol})$ in Table 2, Entry 25.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 3 \mathrm{H}), 2.60(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.65-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.29(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $142.9,128.4,128.2,125.5,35.9,31.5,31.2,22.6,14.0$.

1,1-Diphenylmethane (CAS Registry Number: 101-81-5) ${ }^{13}$ (Table2, Entries 26 and 27)

1,1-Diphenylmethane was obtained in quantitative yield ($42.1 \mathrm{mg}, 250 \mu \mathrm{~mol}$; colorless oil) from benzophenone ($45.5 \mathrm{mg}, 250 \mu \mathrm{~mol}$) by using catalyst $\mathbf{B}(21.2 \mathrm{mg}, 0.5 \mu \mathrm{~mol})$ in Table 2, Entry 27. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.17(\mathrm{~m}, 10 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 141.1, 128.9, 128.4, 126.0, 41.9.

1-Phenyl-2-methylpropan-1-ol (CAS Registry Number: 611-69-8) ${ }^{14}$ (Table 2, Entries 28 and

 29)

1-Phenyl-2-methylpropan-1-ol was obtained in 97% yield ($36.4 \mathrm{mg}, 243 \mu \mathrm{~mol}$; colorles oil) from allyl glycidyl ether ($28 \mathrm{mg}, 250 \mu \mathrm{~mol}$) by using catalyst $\mathbf{B}(5.32 \mathrm{mg}, 125 \mathrm{nmol})$ in Table 2, Entry 29 . ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.25(\mathrm{~m}, 5 \mathrm{H}), 4.3(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.00$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.6,128.1,127.4$, $126.5,80.0,35.2,19.0,18.2$.

Phenethyl alcohol was obtained in 96% yield ($29.4 \mathrm{mg}, 240 \mu \mathrm{~mol}$; colorless oil) from styrene oxide ($30.0 \mathrm{mg}, 250 \mu \mathrm{~mol}$) by using catalyst $\mathbf{A}(0.53 \mathrm{mg}, 0.25 \mu \mathrm{~mol})$ in Table 2, Entry 30.

Phenethyl alcohol was obtained in 74% yield $(22.5 \mathrm{mg}, 185 \mu \mathrm{~mol})$ from styrene oxide $(30.0 \mathrm{mg}, 250$ $\mu \mathrm{mol})$ by using catalyst $\mathbf{B}(5.32 \mathrm{mg}, 125 \mathrm{nmol})$ in Table 2, Entry 31.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.23(\mathrm{~m}, 5 \mathrm{H}), 3.87(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, 1.43 (brs, 1 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.4,129.0,128.6,126.5,63.7,39.2$.

Glycidyl isobutyrate (CAS Registry Number: 3669-66-7) ${ }^{14}$ (Table 2, Entries 32 and 33)

Glycidyl isobutyrate was obtained in 79% yield $(28.5 \mathrm{mg}, 198 \mu \mathrm{~mol}$; brown oil) from glycidyl methacrylate ($35.5 \mathrm{mg}, 250 \mu \mathrm{~mol}$) by using catalyst $\mathbf{A}(0.53 \mathrm{mg}, 0.25 \mu \mathrm{~mol})$ in Table 2, Entry 32 . Glycidyl isobutyrate was obtained in 74% yield ($26.7 \mathrm{mg}, 185 \mu \mathrm{~mol}$) from glycidyl methacrylate $(35.5 \mathrm{mg}, 250 \mu \mathrm{~mol})$ by using catalyst $\mathbf{B}(5.32 \mathrm{mg}, 125 \mathrm{nmol})$ in Table 2, Entry 33. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.42(\mathrm{dd}, J=2.8,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=6.0,12.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.26-3.19 (m, 1H), $2.85(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.59(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.8,64.7,49.4,44.5,33.8,18.9$.

Phenylpropyl triethylsilyl ether (CAS Registry Number: 2290-40-6) ${ }^{16}$ (Table 2, Entries 34 and

 35)

Phenylpropyl triethylsilyl ether was obtained in 83% yield ($61.4 \mathrm{mg}, 208 \mu \mathrm{~mol}$; colorless oil) from 1-(triethylsilyl)oxy-3-phenyl-2-propene $(62.1 \mathrm{mg}, 250 \mu \mathrm{~mol}$) by using catalyst $\mathbf{A}(0.53 \mathrm{mg}, 0.25$ $\mu \mathrm{mol}$) and THF (1 mL) as a solvent in Table 2, Entry 34.

Phenylpropyl triethylsilyl was obtained in 90% yield ($67.9 \mathrm{mg}, 225 \mu \mathrm{~mol}$) from 1-(triethylsilyl)oxy-3-phenyl-2-propene $(62.1 \mathrm{mg}, 250 \mu \mathrm{~mol})$ by using catalyst $\mathbf{B}(5.32 \mathrm{mg}, 125$ nmol) in Table 2, Entry 35.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.15(\mathrm{~m}, 5 \mathrm{H}), 3.64(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.89-1.83(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.60(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 142.2, 128.4, 128.2, 125.6, 62.1, 34.5, 32.1, 6.79, 4.41.

3-Phenyl-1-propanol (CAS Registry Number: 122-97-4) ${ }^{17}$ (Table 4, Entry 1)

3-Phenyl-1-propanol was obtained in 94% yield ($5.5 \mathrm{~g}, 40.6 \mathrm{mmol}$; colorless oil) from cinnamyl alcohol ($5.8 \mathrm{~g}, 43.2 \mathrm{mmol})$ by using catalyst A $(100 \mathrm{mg}, 47.0 \mu \mathrm{~mol})$ in Table 4, Entry 1.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.17(\mathrm{~m}, 5 \mathrm{H}), 3.66(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.92-1.65(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.8,128.4,128.3,125.8,62.1,34.1,32.0$.

6. Reuse test of $5 \% \mathrm{Pd} / \mathrm{SM}$ and $\mathbf{0 . 2 5 \%} \mathrm{Pd} / \mathrm{SM}$ (sc) for the hydrogenation of trans-stilbene

A mixture of trans-stilbene ($4.3 \mathrm{~g}, 24.0 \mathrm{mmol}$) and $5 \% \mathrm{Pd} / \mathrm{SM}(50.0 \mathrm{mg}, 23.5 \mu \mathrm{~mol})$ in MeOH $(100 \mathrm{~mL})$ was stirred at $25^{\circ} \mathrm{C}$ under H_{2} atmosphere (balloon). After 6 h , the mixture was filtered through a funnel (1 mm filter paper). The catalyst on the filter was washed with $\mathrm{EtOAc}(3 \mathrm{~mL} \times 5$), and the filtrate was concentrated in vacuo to afford 1,2-diphenylethane in 74% yield ($3.2 \mathrm{~g}, 17.8$ mmol). The catalyst on the filter was dried in vacuo at room temperature overnight, and then weighed ($49.5 \mathrm{mg}, 99 \%$ recovery). The reaction for the second run was carried out in a procedure similar to the first run except for the amount of trans-stilbene ($3.9 \mathrm{~g}, 21.5 \mathrm{mmol}$) and $5 \% \mathrm{Pd} / \mathrm{SM}$ ($45.0 \mathrm{mg}, 21.1 \mu \mathrm{~mol}$) for $12 \mathrm{~h} .1,2$-diphenylethane was obtained 82% yield ($3.2 \mathrm{~g}, 17.6 \mathrm{mmol}$). The reaction for the third run was also carried out likewise the first run except for the usage of substrate and catalyst. The results were summarized in the following table (Table S1).

A mixture of trans-stilbene ($415 \mathrm{mg}, 2.3 \mathrm{mmol}$) and $0.25 \% \mathrm{Pd} / \mathrm{SM}(\mathrm{sc})(50.0 \mathrm{mg}, 1.2 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was stirred at $25^{\circ} \mathrm{C}$ under H_{2} atmosphere (balloon). After 6 h , the mixture was filtered through a funnel (1 mm filter paper). The catalyst on the filter was washed with EtOAc (3 $\mathrm{mL} \times 5$), and the filtrate was concentrated in vacuo to afford 1,2-diphenylethane in quantitative yield ($420 \mathrm{mg}, 2.3 \mathrm{mmol}$). The catalyst on the filter was dried in vacuo at room temperature overnight, and then weighed ($49.1 \mathrm{mg}, 98 \%$ recovery). The reaction for the second run was carried out in a procedure similar to the first run except for the amount of trans-stilbene ($373 \mathrm{mg}, 2.1 \mathrm{mmol}$) and $0.25 \% \mathrm{Pd} / \mathrm{SM}(\mathrm{sc})(45.0 \mathrm{mg}, 1.1 \mu \mathrm{~mol})$ for $6 \mathrm{~h} .1,2$-diphenylethane was in obtained quantitative yield ($383 \mathrm{mg}, 2.1 \mathrm{mmol}$). The reaction for the third run was also carried out likewise the first run except for the usage of substrate and catalyst. The results were summarized in the following table (Table S2).

Table S1 Reuse study of 5\% Pd/SM

5\% Pd/SM (0.1 mol\%) H_{2} (balloon)				
Run (Time)	Substrate usage	Catalyst usage	Yield of 2 (\%)	Recorvered catalyst
1st (6 h)	$4.3 \mathrm{~g}, 24.0 \mathrm{mmol}$	50.0 mg	$3.2 \mathrm{~g}, 17.8 \mathrm{mmol}, 74 \%$	49.5 mg (99\%)
2nd (12 h)	$3.9 \mathrm{~g}, 21.5 \mathrm{mmol}$	45.0 mg	$3.2 \mathrm{~g}, 17.6 \mathrm{mmol}, 82 \%$	45.0 mg (quant.)
3 rd (23 h)	$3.4 \mathrm{~g}, 19.1 \mathrm{mmol}$	40.0 mg	$3.1 \mathrm{~g}, 17.0 \mathrm{mmol}, 89 \%$	40.0 mg (quant.)

Table S2 Reuse study of $0.25 \% \mathrm{Pd} / \mathrm{SM}(\mathrm{sc})$

Run (Time)	Substrate usage	Catalyst usage	Yield of 2 (\%)	Recorvered catalyst
1st (6 h)	$415 \mathrm{mg}, 2.3 \mathrm{mmol}$	50.0 mg	$420 \mathrm{mg}, 2.3 \mathrm{mmol}$, quant.	$49.0 \mathrm{mg}(98 \%)$
2nd (6 h)	$373 \mathrm{mg}, 2.1 \mathrm{mmol}$	45.0 mg	$383 \mathrm{mg}, 2.1 \mathrm{mmol}$, quant.	45.0 mg (quant.)
3rd (6 h)	$332 \mathrm{mg}, 1.8 \mathrm{mmol}$	40.0 mg	$312 \mathrm{mg}, 1.7 \mathrm{mmol}, 95 \%$	$33.2 \mathrm{mg}(83 \%)$

7. References

1 Bryden A. F. Le Bailly, Mark D. Greenhalgh, Stephen P. Thomas, Chem. Commun. 2012, 48, 1580-1582.
2 Tim N Gieshoff, Uttam Chakraborty, Matteo Villa, Axel Jacobi von Wangelin, Angew. Chem. Int. Ed. 2017, 56, 3585-3589.

3 Manjunath Lamani, Guralamata S. Ravikumara, Kandikere Ramaiah Prabhu, Adv. Synth. Catal. 2012, 354, 1437-1442.
4 Tomohiro Ichikawa, Moeko Netsu, Masahiro Mizuno, Tomoteru Mizusaki, Yukio Takagi, Yoshinari Sawama, Yasunari Monguchi, Hironao Sajiki, Adv. Synth. Catal. 2017, 359, 2269-2279.

5 Michal Szostak, Brice Sautier, Malcolm Spain, David J. Procter, Org. Lett. 2014, 16, 1092-1095. 6 Mingxin Liu, Chao Jun Li, Angew. Chem. Int. Ed. 2016, 55, 10806-10810.

7 Kohei Yamada, Saki Yoshida, Hikaru Fujita, Masanori Kitamura, Munetaka Kunishima, Eur. J. Org. Chem. 2015, 2015, 7997-8002.
8 Carlo Cassani, Giulia Bergonzini, Carl-Johan Wallentin, Org. Lett. 2014, 16, 4228-4231.
9 Tomohiko Shirai, Kazuki Sugimoto, Masaya Iwasaki, Ryuki Sumida, Harunori Fujita, Yasunori Yamamoto, Synlett 2019, 30, 972-976.

10 Milan K. Barman, Kuhali Das, Biplab Maji, J. Org. Chem. 2019, 84, 1570-1579.
11 Jie Ke, Hongling Wang, Liejin Zhou, Chengli Mou, Jingjie Zhang, Lutai Pan, Yonggui Robin Chi, Chem. Eur. J. 2019, 25, 6911-6914.

12 Hiroyoshi Esaki, Fumiyo Aoki, Miho Umemura, Masatsugu Kato, Tomohiro Maegawa, Yasunari Monguchi, Hironao Sajiki, Chem. Eur. J. 2007, 13, 4052-4063.
13 Lauren Petitjeane, Raphael Gagne, Evan S. Beach, Dequan Xiao, Paul T. Anastas, Green Chem. 2016, 18, 150-156.

14 Yasunari Monguchi, Tomohiro Ichikawa, Kei Nozaki, Kensuke Kihara, Yuuko Yamada, Yutaka Miyake, Yoshinari Sawama, Hironao Sajiki, Tetrahedron 2015, 71, 6499-6505.
15 Bryden A. F. Le Bailly, Mark D. Greenhalgh, Stephen P. Thomas, Chem. Commun. 2012, 48, 1580-1582.

16 Hironao Sajiki, Takashi Ikawa, Kazuyuki Hattori, Kosaku Hirota, Chem. Commun. 2003, 5, 654-655.
17 Michal Szostak, Malcolm Spain, David J. Procter, Org. Lett. 2012, 14, 840-843.
8. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of products

Bibenzyl (CAS Registry Number: 103-29-7) (Table 2, Entries 1 and 2; Table 4, Entry 2)

4-Ethylnitrobenzene (CAS Registry Number: 589-16-2) (Table 2, Entries 3, 4, 5, and 6)

N-phenyl- N-propylcarbamate (CAS Registry Number: 634917-15-0) (Table 2, Entry 7; Table 4, Entry 3)

N-Propylaniline (CAS Registry Number: 622-80-0) (Table 2, Entries 8 and 9)

Phenethylamine (CAS Registry Number: 64-04-0) (Table 2, Entries 10 and 11;
Table 4, Entry 4)

Benzoic acid (CAS Registry Number: 65-85-0) (Table 2, Entries 12 and 13)

Benzyl benzenepropanoate (CAS Registry Number: 22767-96-0) (Table 2, Entry 14)

[^0]

Benzenepropanoic acid (CAS Registry Number: 22767-96-0) (Table 2, Entry 15)

Phenol (CAS Registry Number: 108-95-2) (Table 2, Entries 16 and 17)

1-Decanol (CAS Registry Number: 112-30-1) (Table 2, Entries 18 and 19)

Naphthalene (CAS Registry Number: 91-20-3) (Table 2, Entries 20, 21, 22, and 23)

Pentylbenzene (CAS Registry Number: 495-40-9) (Table 2, Entries 24 and 25)

1,1-Diphenylmethane (CAS Registry Number: 101-81-5) (Table 2, Entries 26 and 27)

1-Phenyl-2-methylpropan-1-ol (CAS Registry Number: 611-69-8) (Table 2, Entries 28 and 29)

Phenethyl alcohol (CAS Registry Number: 60-12-8) (Table 2, Entries 30 and 31)

Glycidyl isobutyrate (CAS Registry Number: 3669-66-7) (Table 2, Entries 32 and 33)

Phenylpropyl triethylsilyl ether (CAS Registry Number: 2290-40-6) (Table2, Entries 34 and 35)

3-Phenyl-1-propanol (CAS Registry Number: 122-97-4) ${ }^{17}$ (Table 4, Entry 1)

[^0]: Ph $\mathrm{CO}_{2} \mathrm{Bn}$

