Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Self-assembly of highly stable and active Co₃O₄/H-TiO₂ bulk heterojunction with high-energy interfacial structures for low temperature CO catalytic oxidation

Zehai Xu,^a Qingchuan Yin,^a Xiong Li,^a Qin Meng,^b Lusheng Xu,^a

Boshen Lv^a and Guoliang Zhang^{*a}

TOF measurements

The formula of turnover frequencies for all samples can be calculated as following:

$$\text{TOF}(s^{-1}) = \frac{PV}{RT} \times COvol\% \times conversion\% / \frac{m1 \times m2}{M} / t$$

where P is the pressure (Pa), V is the volume of reactant gases through the reactor every minute (mL), R is the gas constant, and T is the room temperature (K), m1 is mass of total catalyst (g), m2 is mass percent of supported metal and M is the molar mass (g/mol).

Apparent activation energy measurements

The specific reaction rate K can be calculated assuming the ideal gas behaviour as follows:

 $K \text{ (mol } g^{-1} \text{ s}^{-1}\text{)} = \text{GHSV} \text{ (mL } h^{-1} \text{ g}^{-1}\text{)} \times 1/3600 \text{ (h } \text{s}^{-1}\text{)} \times 1/1000 \text{ (L } \text{mL}^{-1}\text{)} \times \text{CO } \text{vol.\%} \times \text{conversion}\% \times 1/22.4 \text{ (mol } \text{L}^{-1}\text{)}$ (1)

The specific reaction rate could be expressed by the Arrhenius equation:

$$K = A \exp(-E_a/RT)$$
(2)

where K is the reaction rate of CO (mol CO $g^{-1} s^{-1}$), A is the pre-exponential factor (s⁻¹), Ea is the apparent activation energy (kJ mol⁻¹), R is the gas constant, and T is the absolute temperature (K).

Taking the natural log of both sides of the equation (2), we get:

$$\ln K = -E_a/T + \ln A \tag{3}$$

By plotting ln K versus 1000/T, the apparent activation energy E_a can be calculated from the slope as shown in Fig. 5.

Table S1. The area percentages of O elemental components calculated

	O 1s				
Samples	O _{Ti-O} (%)	O _{Co-O} (%)	O _{Ti-O-Co} (%)	O _v (%)	
C-TiO ₂	89.12	\	\	10.88	
Co ₃ O ₄ /C-TiO ₂	58.57	18.89	11.02	11.52	
H-TiO ₂	88.54	/	\	11.46	
Co ₃ O ₄ /H-TiO ₂	55.26	17.63	12.79	14.32	

from the XPS spectra.

Catalysts	Morphology	TOF(s ⁻¹) (120°C)	Time on stream (h)	Ref	
Co ₃ O ₄	nanoparticles	7.79×10 ⁻⁴	20	S1	
Co ₃ O ₄ / Ni foam	nanoarrays	3.54×10 ⁻⁴	60	S2	
Co ₃ O ₄	nanoparticles	9.08×10 ⁻⁴	12	S3	
Co ₃ O ₄	nanoparticles	2.27×10 ⁻³	24	S4	
Co ₃ O ₄ /CeO ₂	core-shell nanowires	2.47×10 ⁻³	١	S5	
Co ₃ O ₄	nanosheets	1.91×10 ⁻³ (100°C)	١	S6	
Co ₃ O ₄ /SiO ₂	nanoparticles	1.32×10 ⁻³	١	S7	
N-Co ₃ O ₄	nanosheets	8.58×10 ⁻⁴	١	S8	
Co ₃ O ₄ /CeO ₂	nanoparticles	2.70×10 ⁻³	١	S9	
Co ₃ O ₄ /CeO _{2-x}	nanoparticles	3.15×10-4	100	S10	
Co ₃ O ₄ /CeO ₂	nanorods	6.60×10 ⁻⁴	١	S11	
Co ₃ O ₄ /SiO ₂	multi-yolk-double- shell	3.24×10 ⁻³ (100°C)	28	S12	
Co ₃ O ₄ /Al ₂ O ₃	nanorods	7.37×10 ⁻⁴	١	S13	
Co ₃ O ₄	nanosheets	1.97×10 ⁻³ (110°C)	6	S14	
Co ₃ O ₄ /H-TiO ₂	cross-section octahedron	3.56×10-3	93		
Co ₃ O ₄ /C-TiO ₂	cross-section octahedron	1.79×10 ⁻³	42	This work	
Co ₃ O ₄ /P25	nanoparticles	1.28×10 ⁻³	21		

Table S2. Comparison of TOF and stability with cobalt-based catalysts in literature.

Fig. S1. XRD patterns of C-TiO₂, H-TiO₂, Co₃O₄/C-TiO₂ and Co₃O₄/H-TiO₂. The results demonstrate that preferential growth orientation of H-TiO₂ is [112] direction. After loading Co₃O₄ nanoparticles, some small peaks appeared in the patterns.

Fig. S2. FTIR spectra of C-TiO₂, H-TiO₂, Co₃O₄/C-TiO₂ and Co₃O₄/H-TiO₂.

Fig. S3. FTIR spectrum of $Co_3O_4/P25$ (a) and XRD pattern of $Co_3O_4/P25$ (b). The generated Co-O bond in FTIR spectrum and new small peaks in XRD pattern demonstrate that Co_3O_4 nanoparticles were successfully loaded on P25 supports.

Fig. S4. CO-TPD profiles of different catalysts.

Fig. S5. Conversion rate of catalytic oxidation of CO by Co_3O_4/H -TiO₂ at different flow rates of mixed gas (N₂: 98%, O₂: 1%, CO: 1%).

Fig. S6. H₂-TPR diagram of synthesized catalysts.

Fig. S7. SEM images of Co_3O_4/C -Ti O_2 (a) and $Co_3O_4/P25$ (b) samples after multiple uses in catalysis.

Fig. S8. Co 2p spectra of Co_3O_4/H -Ti O_2 (a) and Co_3O_4/C -Ti O_2 (b) after CO oxidation reaction.

Fig. S9. Reusability of catalysts after subsequent reactions. The catalysts can be recovered to their initial state simply through regenerations up to three cycles.

Fig. S10. Long-term stability test of prepared Co_3O_4/H -TiO₂ catalyst under moisturerich conditions (~2% H₂O) at 180 °C. The Co_3O_4/H -TiO₂ bulk heterojunction can keep attractive activity in the presence of steam for 30 h, revealing high water resistance properties.

Fig. S11. Physical models of anatase TiO_2 (a) and cubic Co_3O_4 (b). The models of anatase TiO_2 and cubic Co_3O_4 were constructed with parameters derived from JCPDS 21-1272 and JCPDS 42-1467, respectively.

References:

- S1. S. J. Deng, X. C. Xiao, X. X. Xing, J. M. Wu, W. Wen, Y. D. Wang, J. Mol. Catal. A: Chem., 2015, 398, 79-85.
- S2. S. P. Mo, S. D. Li, Q. M. Ren, M. Y. Zhang, Y. H. Sun, B. F. Wang, Z. T. Feng, Q. Zhang, Y. F. Chen, D. Q. Ye, *Nanoscale*, 2018, 10, 7746-7758.
- S3. M. H. Li, F. F. Bi, Y. D. Xu, P. P. Hao, K. Xiang, Y. Zhang, S. Y. Chen, J. Guo, X. F. Guo, W.
 P. Ding, ACS Catal. 2019, 9, 11676-11684.
- S4. Z. J. Chen, Y. J. Wang, Q. N. Liang, L. Y. Chen, W. T. Zhan, Y. W. Li, Sci. China Mater. 2020, 63, 267-275.
- S5. J. M. Zhen, X. Wang, D. P. Liu, Z. Wang, J. Q. Li, F. Wang, Y. H. Wang, H. J. Zhang, Nano Res., 2015, 8, 1944-1955.
- S6. X. Y. Wang, X. Y. Li, J. C. Mu, S. Y. Fan, X. Chen, L. Wang, Z. F. Yin, M. Tade, S. M. Liu, ACS Appl. Mater. Inter., 2019, 11, 41988-41999.
- S7. N. Yan, Q. W. Chen, F. Wang, Y. Wang, H. Zhong, L. Hua, J. Mater. Chem. A., 1, 2013, 637-643.
- S8. C. C. Yin,Y. A. Liu, Q. N. Xia,S. F. Kang, X. Lib, Y. G. Wang, L. F. Cui, J. Colloid Interf. Sci., 2019, 553, 427-435.
- S9. L. Lukashuk, K. Fottinger, E. Kolar, C. Rameshan, D. Teschner, M. Havecker, A. Knop-Gericke, N. Yigit, H. Li, E. McDermott, M. Stoger-Pollach, G. Rupprechter, J. Catal., 2016,344, 1-15.
- S10. H. Wang, D. Mao, J. Qi, Q. H. Zhang, X. H. Ma, S. Y. Song, Adv. Funct. Mater., 2019, 29, 1806588.

- S11. J. Q. He, D. Y. Chen, N. J. Li, Q. F. Xu, H. Li, J. H. He, J. M. Lu, *Chemsuschem.*, 2019, 12,1084-1090.
- S12. Y. J. Wang, Z. J. Chen, R. Q. Fang, Y. W. Li, Chemcatchem., 2019, 11, 772-779.
- S13. J. Yang, J. Guo, Y. B. Wang, T. Wang, J. Gu, L. M. Peng, N. H. Xue, Y. Zhu, X. F. Guo, W.
 P. Ding, *Appl. Surf. Sci.*, 2018, **453**, 330-335.
- S14. C. X. Xu, Y. Q. Liu, C. Zhou, L. Wang, H. R. Geng, Y. Ding, *Chemcatchem.*, 2011, 3, 399-407.