Supplementary Information: Design of PtZn Nano Alloys through Interface Tailoring via Atomic Layer Deposition for Propane Dehydrogenation

Piyush Ingale,^a Kristian Knemeyer,^a Phil Preikschas,^a Mengyang Ye,^b Michael Geske,^a Raoul Naumann d'Alnoncourt,^a* Arne Thomas,^b and Frank Rosowski^{a,c}

^a BasCat – UniCat BASF JointLab, Technische Universität Berlin, Berlin 10623, Germany.

Email: <u>r.naumann@bascat.tu-berlin.de</u>

^b Functional Materials, Department of Chemistry, Technische Universität Berlin, Berlin 10623, Germany.

^c BASF SE, Process Research and Chemical Engineering, Heterogeneous catalysis, Ludwigshafen 67056, Germany.

Figure S1. N₂ sorption isotherm of activated catalysts.

Figure S2. HAADF- STEM images and EDX maps of Pt and Zn in as synthesized (a) Pt/SiO₂, (b-d) Pt/ZnO_{ALD}/SiO₂, (e-g) Pt/ZnO_{IWI}/SiO₂ and (h-j) Pt/ZnO

Figure S3. Propane dehydrogenation over blank quartz reactor filled with SiO₂ support.

Figure S4. Propane dehydrogenation over Zn_{ALD}/SiO₂.

Figure S5. XRD patterns of spent catalyst.

Figure S6. HAADF-STEM image of the spent Pt/SiO₂ catalyst.

Figure S7. STEM EDX and elemental mapping of $PtZn_{ALD}/SiO_2$ after reaction, indicating the atomic fraction of Pt and Zn, in agreement with the formation of Pt_1Zn_1 alloy.

Figure S8. EDX mapping and line scan analysis on Pt_1Zn_1 nanoalloy particles in $PtZn_{ALD}/SiO_2$, sitting at edge and in middle of support where the effect of Zn form ZnO under-layer can be seen.

Figure S1. N₂ sorption isotherm of activated catalysts.

Figure S2. HAADF- STEM images and EDX maps of Pt and Zn in as synthesized (a) Pt/SiO₂, (b-d) Pt/ZnO_{ALD}/SiO₂, (e-g) Pt/ZnO_{IWI}/SiO₂ and (h-j) Pt/ZnO

Figure S3. Propane dehydrogenation over blank quartz reactor filled with SiO_2 support at 600°C, atmospheric pressure and 50 mL/min of 20 vol.% C₃H₈/He flow. The conversion of propane was stable at 3% while selectivity to propylene was close to 53%. This activity can be rationalized by thermal dehydrogenation of propane.

Figure S4. Propane dehydrogenation over Zn_{ALD}/SiO_2 , (prepared via 1 cycle of ZnO ALD onto SiO2) measured at 600°C, atmospheric pressure and 50 mL/min of 20 vol.% C3H8/He flow.

Figure S5. XRD analysis of spent catalyst. (+: Pt and * Pt_1Zn_1)

Figure S6. HAADF-STEM image of the spent Pt/SiO_2 catalyst.

Figure S7. STEM EDX and elemental mapping of $PtZn_{ALD}/SiO_2$ after reaction, indicating the atomic fraction of Pt and Zn, in agreement with the formation of Pt_1Zn_1 alloy.

Figure S8. EDX mapping and line scan analysis on Pt_1Zn_1 nanoalloy particles in $PtZn_{ALD}/SiO_2$, sitting at edge and in middle of support where the effect of Zn form ZnO under-layer can be seen.