Supporting Information

Surface-state-induced upward band bending in P doped $g-C_3N_4$ for the

formation of isotype heterojunction between bulk g-C₃N₄ and P doped g-C₃N₄:

Photocatalytic hydrogen production

Nithya Thangavel, Kavitha Pandi, A. R. Mahammed Shaheer and Bernaurdshaw Neppolian*

SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, Chennai -

603203, Tamil Nadu, India.

*E-mail: <u>neppolib@srmist.edu.in</u>

Fig. S1. Zeta potentials of CN, PCN and 11 CPCN catalysts

Fig. S2. SEM EDS of CN, PCN and 11 CPCN catalysts

Fig. S3. TEM images for Pt fringes on 11 CPCN heterojunction catalysts after the reaction

Fig. S4. TEM-EDS of 11 CPCN catalysts after the reaction

Fig. S5. XPS Valence band spectra of CN and PCN

Fig. S6. XPS survey scan spectra of CN, PCN and 11 CPCN

Fig. S7. C 1s & N 1s spectra of CN, PCN and 11 CPCN catalysts

Fig. S8. Electrochemical (EIS) impedance spectroscopy

Fig. S9. Photocatalytic activity of optimization of phosphorous on CN

Fig. S10. Photocatalytic activity of catalysts without Pt

Fig. S11. Optimization of catalysts amount with different weight % of Pt

Table S1. Hydrogen production rate of bulk P-doped g-C₃N₄

Table S2. Comparison of H_2 production rate with previously reported isotype heterojunction catalysts based on g-C₃N₄

Fig. S1. Zeta potentials of CN, PCN and 11 CPCN catalysts

Fig. S2. SEM EDS of (A) CN (B) PCN and (C) 11 CPCN catalysts

Fig. S3. TEM images for Pt fringes of the used 11 CPCN heterojunction catalysts

Fig. S4. TEM-EDX of 11 CPCN heterojunction catalysts after the reaction

Fig. S5. XPS Valence band spectra of CN and PCN

Fig. S6. XPS survey scan spectra of CN, PCN and 11 CPCN

Fig. S7. XPS of C 1s and N 1s spectra (A & B) CN (C & D) PCN (E & F) 11 CPCN catalysts

Fig. S8. Electrochemical (EIS) impedance spectroscopy

Fig. S9. Photocatalytic activity of optimization of phosphorous on CN

Fig. S10. Photocatalytic activity of the catalysts without Pt

Fig. S11. Optimization of catalysts amount with different weight % of Pt

S. No.	Source	Catalysts	Synthesis condition	Catalysts amount (mg)	Sacrifici al agent	Wt % of Pt	Light source	H ₂ production (mmol/h/g)	Ref.
1.	Melamine & Phosphoric acid	Flower like P-g- C ₃ N ₄	550°C, 4 h, N ₂ flow, 2.3°C/ min	50	10 Vol % TEOA	3	300 W Xe lamp with 400 nm UV Cut-off	0.256	S1
2.	Melamine & Phosphoric acid	Tubular P-g-C ₃ N ₄	Hydrotherma l followed by 500°C, 4 h	100	20 mL methanol	1	300 W Xe lamp with 400 nm UV Cut-off	0.067	39
3.	Melamine & Sodium pyrophosph ate	Carbon defected tubular P- g-C ₃ N ₄	Autoclave at 180°C, 10 h and 500°C, 4 h, 2.5°C/ min	100	20 mL methanol	1	300 W Xe lamp with 400 nm UV Cut-off	0.057	34
4.	Guanidiniu mhydrochl oride & hexachloro cyclotripho sphazene	P doped g-C ₃ N ₄	500°C, 4h, 2°C/ min	100	10 Vol % TEOA	3	300 W Xe lamp with 400 nm UV Cut-off	0.050	S2
5.	Melamine & 2-amino ethyl phosphonic acid	Bulk P-g- C ₃ N ₄	500°C, 3 h, N ₂ flow and 550°C, 5 h	50	20 Vol % TEOA	1	300 W Xe lamp for 40 min then 400 nm UV Cut-off	0.510	S3
6.	Melamine & (NH ₄) ₂ HP O ₄	Bulk P-g- C ₃ N ₄	520°C, 2 h, 5°C/ min	50	20 Vol % TEOA	1	300 W Xe lamp for 40 min then 400 nm UV Cut-off	0.153	S3
7.	Dicyandia mide & (NH ₄) ₂ HP O ₄	P doped g-C ₃ N ₄	520°C, 2 h, 5°C/ min	1000	10 Vol % methanol	1	250 W Na lamp with UV cut-off portion	0.052	S4
8.	Melamine & (hydroxyet hylidene)di phosphonic	Mesopor ous P-g- C ₃ N ₄	500°C, 3 h, N ₂ flow	50	10 Vol % TEOA	3	300 W Xe lamp with 400 nm UV Cut-off	0.104	S5

Table S1. Hydrogen production rate of bulk P-doped $g-C_3N_4$

9.	Melamine & Sodium tripyrophos phate	P-doped g-C ₃ N ₄	550°C, 2 h, 5°C/ min	50	25 vol % methanol	1	350 W Xe arc lamp	0.191	S6
10.	Melamine & Sodium dihydrogen phosphate	Bulk P- doped g- C ₃ N ₄	520°C, 4 h, 5°C/ min	5	20 Vol % MeOH	1	250 W Xe arc lamp for 1 h then 400 nm UV Cut-off	0.603	This work

acid

Table S2. Comparison of Hydrogen production rate with previously reported isotypeheterojunction catalysts based on g-C3N4

S. No.	Photocatalysts	Light Source	Experimental conditions	H ₂ evolution rate (mmol/ h/ g)	Ref.
1.	g-C ₃ N ₄ /g-C ₃ N ₄	300 W Xe lamp $(\lambda > 420 \text{ nm})$	50 mg catalyst, 15 vol % TEOA, 1 wt% of Pt	0.029	38
2.	1D/2D g-C ₃ N ₄	150 W metal halide lamp with UV cut-off filter $(\lambda > 420 \text{ nm})$	100 mg catalysts, 10 vol % TEOA, 0.5 wt % of Pt	0.241	S7
3.	g-CNNS/ g- CNNF (NS- nanosheet/ NF- nanofibre)	300 W Xe lamp $(\lambda > 420 \text{ nm})$	50 mg catalysts, 10 vol % TEOA, 1 wt% of Pt	1.375	S8
4.	Meso-g-C ₃ N ₄ / g-C ₃ N4	300 W Xe lamp with AM 1.5 G filter	50 mg catalysts, 20 mL MeOH	0.115	25
5.	g-C ₃ N ₄ / B- doped g-C ₃ N ₄ quantum dot	300 W Xe lamp $(\lambda > 420 \text{ nm})$	50 mg catalysts, 10 vol % TEOA, 1.5 wt % of Pt	0.070	S9
6.	g-C ₃ N ₄ / S-g- C ₃ N ₄	Visible light		0.190	S10

7.	$g-C_3N_4/P-g-$	250 W Xe lamp	5 mg catalysts,	1.590	This
	C_3N_4	for 1h prior to	20 mL MeOH,		work
		visible light (UV	1 wt% of Pt		
		cut-off filter $\lambda >$			
		420 nm)			

References

- (1) H. Yanga, Y. Zhou, Y. Wang, S. Hu, B. Wang, Q. Liao, H. Li, J. Bao, G. Ge, S. Jia, J. Mater. Chem. A, 2018, 6, 16485-16494.
- (2) Y. Zhou, L. Zhang, J. Liu, X. Fan, B. Wang, M. Wang, W. Ren, J. Wang, M. Li, J. Shi, J. Mater. Chem. A, 2015, 3, 3862-3867.
- (3) J. Ran, T. Y. Ma, G. Gao, X.-W. Duc, S. Z. Qiao, *Energy Environ. Sci.*, **2015**, *8*, 3708-3717.
- (4) S. Hu, L. Ma, J. You, F. Li, Z. Fan, G. Lu, D. Liu, J. Gui, *Appl. Surf. Sci*, 2014, 311, 164-171.
- (5) Y.-P. Zhu, T.-Z. Ren, Z.-Y. Yuan, ACS Appl. Mater. Interfaces, 2015, 7, 16850-16856.
- (6) S. Cao, Q. Huang, B. Zhu, J. Yu, J. Power Sources, 2017, 351, 151-159.
- (7) S. Mahzoon, S. M. Nowee, M. Haghighi, *Renew. Energy*, 2018, 127, 433-443.
- (8) H. Li, H. Tian, X. Wang, M. Pi, S. Wei, H. Zhu, D. Zhang, S. Chen, ACS Appl. Energy Mater., 2019, 2, 4692-4699.
- (9) Y. Wang, Y. Li, J. Zhao, J. Wang, Z. Li, Int. J. Hydrog. Energy, 2019, 44, 618-628.
- (10) J. Zhang, M. Zhang, R. -Q. Sun, X. Wang, Angew. Chem. 2012, 124, 10292 -10296.