Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Surface Defect-Rich g-C₃N₄/TiO₂ Z-scheme Heterojunction for Efficient

Photocatalytic Antibiotic Removal: Rational Regulation of Free Radicals

and Photocatalytic Mechanism

Pei Ning, Huayu Chen^{*}, Jianhui Pan, Junhui Liang, Laishun Qin, Da Chen^{*}, Yuexiang

Huang

College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, Zhejiang,

China

*Authors to whom correspondence should be addressed. Email: hychen@cjlu.edu.cn; dchen_80@hotmail.com

Figure S1. Schematic illustration of preparation of defect-rich H-CN/TiO₂ Z-scheme heterojunction.

Figure S2. SEM image of the pure $g-C_3N_4$.

Figure S3. TEM images of (a) CN/TiO₂ and (b) H-CN/TiO₂.

Figure S4. XRD patterns of the pure TiO₂ and g-C₃N₄.

Figure S5. Ti 2p XPS spectra of the TiO_2 and CN/TiO_2 .

Figure S6. High-resolution XPS spectra of Ti 2p level for the $H-TiO_2$ and $H-CN/TiO_2$ composite.

Figure S7. XPS spectra of N 1s (a) and C 1s (b) for the pure $g-C_3N_4$.

Figure S8. Photocatalytic degradation of TC-HCl over the H-CN/TiO₂ sample for four cycles

Figure S9. TOC removal experiments over the CN/TiO_2 and $H-CN/TiO_2$ after degradation for 90 min.

Figure S10. m/z values of TC-HCl degradation over the H-CN/TiO₂: (a)initial TC-HCl solution and TC-HCl solution after degradation for (b) 30 and (c) 90 min.

Figure S11. Possible degradation pathway and intermediate products of TC-HCl during the degradation process.

Figure S12. (a) The degradation dynamic curves and (b) rate constants of the H-CN/TiO₂ for TC-HCl degradation under different pH environments. Mott-Schottky measurements of (c) H-C₃N₄ and (d) H-TiO₂ under different pH environments. (e) Schematic illustration of the energy bandgap positions of the H-CN/TiO₂ under different pH environments (pH = 5, 7 and 12)

Figure S13. (a) The dynamic curves and (b) rate constants of the samples for photocatalytic RhB degradation under the irradiation of 300 W Xe arc lamp equipped with an L42 cutoff filter.

Figure S14. UV-visible absorption spectra of the samples.

Figure S15. UV-visible absorption spectra of the samples before and after hydrogenation.

Figure S16. The plots of the $(\alpha h \nu)^n$ versus photon energy $(h \nu)$ of (a) H-C₃N₄ and (b) H-TiO₂. Mott-Schottky plots of (c) H-C₃N₄ and (d) H-TiO₂.

Figure S17. XPS valence band spectra of the TiO_2 , H- TiO_2 , g- C_3N_4 and H- C_3N_4 samples.

Figure S18. EPR spectra of the H-CN/TiO₂ Z-scheme heterojunction for DMPO-•OH under Xe lamp + L42 cutoff filter.

Figure S19. (a) Degradation dynamic curves and (b) rate constants of the $g-C_3N_4/H-TiO_2$ and $H-CN/TiO_2$ samples.

Figure S20. (a) The plot of the $(\alpha h \nu)^n$ versus photon energy $(h\nu)$ and (b) Mott-Schottky measurement of the g-C₃N₄.

Figure S21. (a) Possible photodegradation mechanism of TC-HCl over the Z-scheme the g- C_3N_4/H -TiO₂ heterojunction. (b) Photodegradations over the g- C_3N_4/H -TiO₂ with scavengers of different reactive species (300 W Xe arc lamp + L42 cutoff filter).

Figure S22. EPR spectra of the $g-C_3N_4/H-TiO_2$ and $H-CN/TiO_2$ heterojunctions for DMPO-•OH under Xe lamp + L42 cutoff filter.

Figure S23. (a) Degradation dynamic curves and (b) rate constants of the $H-C_3N_4/TiO_2$ and $H-CN/TiO_2$ samples.

Figure S24. (a) Mott-Schottky measurement and (b) the plot of the $(\alpha h \nu)^n$ versus photon energy $(h\nu)$ of the TiO₂.

Figure S25. EPR spectra of the $H-C_3N_4/TiO_2$ and $H-CN/TiO_2$ heterojunctions for DMPO-•OH under Xe lamp + L42 cutoff filter.

Table S1. Ratios of N_{2C} to N_{3C} of the samples (from XPS data).

Sample	$g-C_3N_4$	CN/TiO ₂	H-CN/TiO ₂
N _{2C} /N _{3C}	2.38	0.891	0.374

Table S2. Element compositions and ratios of the heterojunctions (from XPS data).

Element	C (at.%)	N (at.%)	N/C (atomic ratio)
CN/TiO ₂	18.5	0.92	0.0497
H-CN/TiO ₂	25.8	0.88	0.0341