Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

## **Supporting Information**

## P-Doped Nickel Sulfide Nanosheet Arrays for Highly Efficient Overall Water Splitting

Wenjun He,<sup>a</sup> Dongbo Jia,<sup>a</sup> Jianing Cheng,<sup>a</sup> Fangqing Wang,<sup>a</sup> Liang Zhang,<sup>a</sup> Ying Li,<sup>a</sup>

Caichi Liu,<sup>a</sup> Qiuyan Hao\*,<sup>a</sup> Jianling Zhao,\*,<sup>a</sup>

<sup>a</sup> School of Material Science and Engineering, Hebei University of Technology,

Dingzigu Road 1, Tianjin 300130, P. R. China

E-mail address: haoqiuyan@hebut.edu.cn (QY. Hao). hebutzhaoj@126.com (JL. Zhao)



Fig. S1 The schematic illustration of the synthesis process for the  $P-Ni_3S_2$  grown on Ni foam.



Fig. S2 (a) XRD pattern, (b) EDX spectrum and (c, d) SEM images of Ni(OH)<sub>2</sub>/NF.



Fig. S3 Photographic images of Ni foam (NF), Ni(OH)\_2/NF and P-Ni\_3S\_2/NF.



Fig. S4 SEM image of (a-b)  $P_{3.0\%}$ -Ni<sub>3</sub>S<sub>2</sub>/NF, (c-d)  $P_{22.1\%}$ -Ni<sub>3</sub>S<sub>2</sub>/NF and (e-f) Ni<sub>3</sub>S<sub>2</sub>/NF.



Fig. S5 EDX elemental mapping of (a)  $P_{3.0\%}\text{-}Ni_3S_2/NF$ , (b)  $P_{8.9\%}\text{-}Ni_3S_2/NF$  and (c)  $P_{22.1\%}\text{-}Ni_3S_2/NF.$ 



Fig. S6 (a) XRD pattern and (b) SEM of  $P_{8.9\%}$ -Ni<sub>3</sub>S<sub>2</sub>/NF after HER.



Fig. S7 Typical cyclic voltammetry curves of (a)  $Ni_3S_2/NF$ , (b)  $P_{3.0\%}$ - $Ni_3S_2/NF$ , (c)  $P_{8.9\%}$ - $Ni_3S_2/NF$  and (d)  $P_{22.1\%}$ - $Ni_3S_2/NF$  with different scan rates in 1M KOH.



**Fig. S8** Polarization curves from normalized to the electrochemical active surface area (ECSA) for HER.



Fig. S9 D(a) XRD pattern and (b) SEM of  $P_{8.9\%}$ -Ni<sub>3</sub>S<sub>2</sub>/NF after OER.

| Sample                                             | Precursor ratio (S: P)<br>(mmol : mmol) | S: P atomic ratio<br>(determined by EDS) |
|----------------------------------------------------|-----------------------------------------|------------------------------------------|
| P <sub>3.0%</sub> -Ni <sub>3</sub> S <sub>2</sub>  | 34.17 : 0.342 = 100 : 1                 | 39.32 : 1.65 = 23.83 : 1                 |
| $P_{8.9\%}$ -Ni <sub>3</sub> S <sub>2</sub>        | 34.17 : 1.026 = 33 : 1                  | 37.94 : 3.73 = 10.17 : 1                 |
| P <sub>22.1%</sub> -Ni <sub>3</sub> S <sub>2</sub> | 34.17 : 1.710 = 20 : 1                  | 34.22 : 5.31 = 6.45 : 1                  |

Table S1. S/P Feed Ratio and Atomic Ratio of the synthesized  $P_{X\%}$ -Ni<sub>3</sub>S<sub>2</sub>/NF.

**Table S2.** The chemical composition of P-Ni<sub>3</sub>S<sub>2</sub> and Ni<sub>3</sub>S<sub>2</sub> measured by XPS.

|                                                   |       | Atomic Percentage (At %) |       |       | P Doping concentration (At %) |
|---------------------------------------------------|-------|--------------------------|-------|-------|-------------------------------|
| Samples                                           | Ni    | Р                        | S     | 0     | $\frac{n(P)}{n(P) + n(S)}$    |
| Ni <sub>3</sub> S <sub>2</sub>                    | 15.75 |                          | 10.80 | 28.07 |                               |
| $P_{3.0\%}$ -Ni <sub>3</sub> S <sub>2</sub>       | 16.28 | 0.35                     | 10.62 | 29.46 | 3.19                          |
| P <sub>8.9%</sub> -Ni <sub>3</sub> S <sub>2</sub> | 16.14 | 1.02                     | 10.44 | 30.54 | 8.90                          |
| $P_{22.1\%}$ -Ni <sub>3</sub> S <sub>2</sub>      | 16.07 | 2.90                     | 10.25 | 31.77 | 22.05                         |

Table S3. Comparison of the HER performance of  $P_{8.9\%}$ -Ni<sub>3</sub>S<sub>2</sub>/NF with other well-performed

| electroc                                                 | atalysts.                      |                                |                                 |                                     |           |
|----------------------------------------------------------|--------------------------------|--------------------------------|---------------------------------|-------------------------------------|-----------|
| Catalysts                                                | η@10 mA cm <sup>-2</sup><br>mV | η@20 mA cm <sup>-2</sup><br>mV | η@100 mA cm <sup>-2</sup><br>mV | Tafel slope<br>mV dec <sup>-1</sup> | Ref.      |
| P <sub>8.9%</sub> -Ni <sub>3</sub> S <sub>2</sub> /NF    | 101                            | 127                            | 224                             | 85                                  | This work |
| Ni <sub>3</sub> S <sub>2</sub> /NF                       | 137                            | 159                            | 230                             | 96                                  | 1         |
| N-Ni <sub>3</sub> S <sub>2</sub> /NF                     | 110                            | ~160                           | ~230                            |                                     | 2         |
| Sn-Ni <sub>3</sub> S <sub>2</sub> /NF                    | 137                            | ~200                           | ~320                            | 148                                 | 3         |
| N-Ni <sub>3</sub> S <sub>2</sub> @C/NF                   | 113                            |                                |                                 | 90                                  | 4         |
| Fe <sub>11.1%</sub> - Ni <sub>3</sub> S <sub>2</sub> /NF | 126                            |                                |                                 | 89                                  | 5         |
| Fe <sub>17.5%</sub> - Ni <sub>3</sub> S <sub>2</sub> /NF | 47                             | 142                            | 232                             | 95                                  | 6         |

| Ni <sub>1.5</sub> Fe <sub>0.5</sub> P/CF                                             | 282 |     |     | 125  | 7  |
|--------------------------------------------------------------------------------------|-----|-----|-----|------|----|
| $H-Co_{0.85}Se P$                                                                    | 150 | 180 |     | 83   | 8  |
| Ni <sub>2</sub> P-NiSe <sub>2</sub> /CC                                              | 66  |     |     | 72.6 | 9  |
| Ni <sub>x</sub> Co <sub>3-x</sub> S <sub>4</sub> /Ni <sub>3</sub> S <sub>2</sub> /NF | 136 |     | 258 | 107  | 10 |
| NiFe LDH@NiCoP/NF                                                                    | 120 |     |     | 88.2 | 11 |
| P <sub>9.03%</sub> -(Ni, Fe) <sub>3</sub> S <sub>2</sub> /NF                         | 98  | 126 | 218 | 88   | 12 |

Table S4. EIS and  $C_{dl}$  results of  $P_{X\%}\text{-}Ni_3S_2/NF,\,Ni_3S_2/NF.$  (x=3.0, 8.9 and 22.1)

| Sample                                  | Ni <sub>3</sub> S <sub>2</sub> | P <sub>4.2%</sub> -(Ni, Fe) <sub>3</sub> S <sub>2</sub> /NF | P <sub>8.9%</sub> -(Ni, Fe) <sub>3</sub> S <sub>2</sub> /NF | P <sub>15.5%</sub> -(Ni, Fe) <sub>3</sub> S <sub>2</sub> /NF |
|-----------------------------------------|--------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|
| Rct [ Ω ]                               | 4.05                           | 2.03                                                        | 1.83                                                        | 2.30                                                         |
| $C_{dl} [\mathrm{mF} \mathrm{cm}^{-2}]$ | 18.4                           | 36.8                                                        | 42.6                                                        | 32.5                                                         |

Table S5. Comparison of the OER performance of  $P_{8.9\%}$ -Ni<sub>3</sub>S<sub>2</sub>/NF with other well-performed

| electroca                                                    | italysts.                      |                                |                                 |                                     |           |
|--------------------------------------------------------------|--------------------------------|--------------------------------|---------------------------------|-------------------------------------|-----------|
| Catalysts                                                    | η@10 mA cm <sup>-2</sup><br>mV | η@20 mA cm <sup>-2</sup><br>mV | η@100 mA cm <sup>-2</sup><br>mV | Tafel slope<br>mV dec <sup>-1</sup> | Ref.      |
| P <sub>8.9%</sub> -Ni <sub>3</sub> S <sub>2</sub> /NF        | 256                            | 267                            | 330                             | 30                                  | This work |
| N-Ni <sub>3</sub> S <sub>2</sub> /NF                         |                                |                                | 330                             | 79                                  | 2         |
| Fe-Ni <sub>3</sub> S <sub>2</sub> /FeNi                      | 282                            |                                |                                 | 54                                  | 13        |
| Ni/NiS                                                       |                                | ~320                           | ~390                            | 109.8                               | 14        |
| $MoS_2/Ni_3S_2$                                              | 218                            |                                | ~290                            | 88                                  | 15        |
| NiFe LDH@NiCoP/NF                                            | 220                            |                                |                                 | 48.6                                | 11        |
| Ni <sub>0.36</sub> Fe <sub>2.64</sub> O <sub>4</sub> /Ni     | 225                            |                                |                                 | 44                                  | 16        |
| P <sub>9.03%</sub> -(Ni, Fe) <sub>3</sub> S <sub>2</sub> /NF | 224                            | 239                            | 277                             | 30                                  | 12        |

|                                                                 | η@10 mA cm <sup>-2</sup><br>mV | η@20 mA cm <sup>-2</sup><br>mV | η@100 mA cm <sup>-2</sup><br>mV | Ref.      |
|-----------------------------------------------------------------|--------------------------------|--------------------------------|---------------------------------|-----------|
| P <sub>8.9%</sub> -Ni <sub>3</sub> S <sub>2</sub> /NF           | 1.63                           | 1.68                           | 1.84                            | This work |
| Fe <sub>11.1%</sub> -Ni <sub>3</sub> S <sub>2</sub> /NF         | 1.60                           | 1.66                           |                                 | 5         |
| H-Co <sub>0.85</sub> Se P                                       | 1.64                           |                                |                                 | 8         |
| Ni <sub>1.5</sub> Fe <sub>0.5</sub> P/CF                        | 1.589                          | 1.635                          |                                 | 7         |
| P <sub>9.03%</sub> -(Ni, Fe) <sub>3</sub> S <sub>2</sub><br>/NF | 1.54                           | 1.58                           | 1.72                            | 12        |

**Table S6.** Comparison of the Overall water splitting performance of  $P_{8.9\%}$ -Ni<sub>3</sub>S<sub>2</sub>/NF with otherwell-performed electrocatalysts.

## Reference

- G. Ren, Q. Hao, J. Mao, L. Liang, H. Liu, C. Liu and J. Zhang, *Nanoscale*, 2018, **10**, 17347-17353.
- P. Chen, T. Zhou, M. Zhang, T. Yun, C. Zhong, Z. Nan, L. Zhang, C. Wu and X. Yi, *Adv. Mater.*, 2017, 29.
- J. Yu, F. X. Ma, Y. Du, P. P. Wang, C. Y. Xu and L. Zhen, *Chemelectrochem*, 2017, 4.
- Q. Hao, S. Li, H. Liu, J. Mao, Y. Li, C. Liu, J. Zhang and C. Tang, Catal. Sci. Technol., 2019, 9, 3099-3108.
- W. Zhu, Z. Yue, W. Zhang, N. Hu, Z. Luo, M. Ren, Z. Xu, Z. Wei, Y. Suo and J. Wang, J. Mater. Chem. A, 2018, 6.
- G. Zhang, Y. S. Feng, W. T. Lu, D. He, C. Y. Wang, Y. K. Li, X. Y. Wang and F. F. Cao, *Acs Catal.*, 2018, 8.
- H. Huang, C. Yu, C. Zhao, X. Han, J. Yang, Z. Liu, S. Li, M. Zhang and J. Qiu, *Nano Energy*, 2017, 34, 472-480.
- Y. Hou, M. Qiu, T. Zhang, X. Zhuang, C. S. Kim, C. Yuan and X. Feng, *Adv. Mater.*, 2017, 29.
- C. Liu, T. Gong, J. Zhang, X. Zheng, J. Mao, H. Liu, Y. Li and Q. Hao, *Appl. Catal. B*, 2020, 262, 118245.
- Y. Wu, Y. Liu, G.-D. Li, X. Zou, X. Lian, D. Wang, L. Sun, T. Asefa and X. Zou, *Nano Energy*, 2017, 35, 161-170.
- H. Zhang, X. Li, A. Hähnel, V. Naumann, C. Lin, S. Azimi, S. L. Schweizer,
  A. W. Maijenburg and R. B. Wehrspohn, *Adv. Funct. Mater.*, 2018, 1706847.
- C. Liu, D. Jia, Q. Hao, X. Zheng, Y. Li, C. Tang, H. Liu, J. Zhang and X. Zheng, ACS Appl. Mater. Interfaces, 2019, 11, 27667-27676.
- C. Z. Yuan, Z. T. Sun, Y. F. Jiang, Z. K. Yang, N. Jiang, Z. W. Zhao, U. Y. Qazi, W. H. Zhang and A. W. Xu, *Small*, 2017, 13, 8.
- G. F. Chen, T. Y. Ma, Z. Q. Liu, N. Li, Y. Z. Su, K. Davey and S. Z. Qiao, *Adv. Funct. Mater.*, 2016, 26, 3314-3323.
- 15. J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang and

X. Feng, Angew. Chem., Int. Ed., 2016, 55, 6702-6707.

J. Huang, J. Han, R. Wang, Y. Zhang, X. Wang, X. Zhang, Z. Zhang, Y. Zhang, B. Song and S. Jin, *Acs Energy Lett.*, 2018, 3, 1698-1707.