Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Visible-Light Driven Photo-enhanced Zinc-Air Batteries using Synergistic Effect of Different Type of MnO₂ Nanostructures

Ankita Mathur^a, Ravinder Kaushik^b and Aditi Halder^{*b}

^a School of Engineering, Indian Institute of Technology Mandi, Mandi, H.P., India

^b School of Basic Science, Indian Institute of Technology Mandi, Mandi, H.P., India

	Atomic percentage					
	α- MnO ₂	δ- MnO ₂	(α+δ)- Mn11	$(\alpha+\delta)$ - Mn12	(α+δ)- Mn21	
Mn (VI)	28.01	11.15	21.50	14.26	9.96	
Mn(IV)	71.99	81.91	53.71	63.68	69.33	
Mn(III)		2.87	6.86	12.23	10.08	
Mn(II)		1.63	5.33	4.88	5.05	

Table 1 showing atomic percentage of Mn in various oxidation states calculated from XPS

Table 2 showing surface area and pore radius measurement

	α- MnO ₂	δ- MnO ₂	$(\alpha+\delta)$ - MnO ₂
Specific surface area (m ² /g)	57.63	171.40	52.03
Pore diameter (Å)	38.14	34.02	31.28

	Specific Capacity	Power density	Reference
	at 5 mA cm ⁻²	$(mW cm^{-2})$	
$δ-MnO_2$	169.5 mAh		1
δ - MnO ₂	160.3 mAh		1
α - MnO ₂	175.2 mAh		1
α - MnO ₂	171.5 mAh		1
Fe doped α-	669.0 mAh g ⁻¹	30.65	2
MnO ₂			
α - MnO ₂ /CNT10		66.30	3
α - MnO ₂ /CNT20		65.40	3
α - MnO ₂		61.60	3
/DWCNT			
α - MnO ₂ /XC72		61.50	3
α - MnO ₂		59.50	3
/SWCNT			
α - MnO ₂ /AC		57.60	3
α - MnO ₂ /SMGP		40.50	3
MnO ₂ -IL _{0.5}	762.0 mAh g ⁻¹	166.00	4
CoMn ₂ O ₄ /rGO	460.0 mAh g ⁻¹		5
	(20 mA cm^{-2})		
CoMn ₂ O ₄ /N- rGO	610.0 mAh g ⁻¹ (20		5
	$mA cm^{-2}$)		
Co ₃ O ₄ / MnO ₂		43.00	6
Co ₃ O ₄		15.00	6
MnO ₂		32.00	6
Pt/C	625 mAh g ⁻¹	140.00	7
α - MnO ₂	710.0 mAh g ⁻¹	6.91	This work
δ- MnO ₂	671.0 mAh g ⁻¹	15.77	This work
$(\alpha + \delta)$ - MnO ₂	715.0 mAh g ⁻¹	28.53	This work

Table 3 showing survey of various cathode materials used for Zn-air battery

Reference:

- 1 Y. Huang, Y. Lin and W. Li, *Electrochim. Acta*, 2013, **99**, 161–165.
- 2 A. Mathur and A. Halder, *Catal. Sci. Technol.*, 2019, **9**, 1245–1254.
- 3 P. C. Li, C. C. Hu, T. H. You and P. Y. Chen, *Carbon N. Y.*, 2017, **111**, 813–821.
- 4 Y. Gu, G. Yan, Y. Lian, P. Qi, Q. Mu, C. Zhang, Z. Deng and Y. Peng, *Energy Storage Mater.*, DOI:10.1016/j.ensm.2019.05.006.
- 5 M. Prabu, P. Ramakrishnan, H. Nara, T. Momma, T. Osaka and S. Shanmugam, *ACS Appl. Mater. Interfaces*, 2014, **6**, 16545–16555.
- 6 C. Cui, G. Du, K. Zhang, T. An, B. Li, X. Liu and Z. Liu, *J. Alloys Compd.*, 2020, **814**, 152239.

7 X. Li, N. Xu, H. Li, M. Wang, L. Zhang and J. Qiao, *Green Energy Environ.*, 2017, **2**, 316–328.