

ELECTRONIC SUPPLEMENTARY INFORMATION

Figure S1 : IR spectra of FePO₄ catalyst

Figure S2 : TEM micrograph (scale = 100 nm) of FePO₄ catalyst

Figure S3 : Time on line studies over the fresh catalysts at a temperatures of 350 °C and 550 °C at a carbon to oxygen ratio of 8:3, GHSV = 5000 h^{-1}

Figure S4 : Effect of temperature on the conversion of *n*-octane and selectivity towards products over $Fe_2P_2O_7$ phase at a carbon to oxygen ratio of 8:3, GHSV = 5000 h⁻¹

Figure S5 : Time on line studies over the "deactivated" catalyst catalysts at a temperatures of 350 °C and 550 °C at a carbon to oxygen ratio of 8:3, GHSV = 5000 h^{-1}

Figure S6 : Time on line studies over the "regenerated" catalyst catalysts at a temperatures of 350 °C and 550 °C at a carbon to oxygen ratio of 8:3, GHSV = 5000 h^{-1}

S1: Analysis of products and Calculations:

The products of the catalysed reactions were expressed as conversion, selectivity and yield. Conversion is a measure of the amount of feed introduced into the reactor that is converted into products:

Conversion (mol %) =
$$\frac{\text{moles of } n \text{- octane in } - \text{ moles of } n \text{- octane out}}{\text{moles of } n \text{- octane in}} \times 100$$

The selectivity towards a product may be defined as the ratio of that product formed to the total moles of products formed, based on carbon atoms:

Selectivity (mol %) =
$$\frac{\text{total moles carbon of product component}}{\text{total moles carbon of all product components}} \times 100$$

The yield is the molar fraction of a particular product formed to the total number of moles of feed introduced:

$$Yield (mol \%) = \frac{Selectivity of product component \times conversion}{100}$$

The gas hourly space velocity (GHSV) was calculated as follows:

Gas hourly space velocity, GHSV
$$(h^{-1}) = \frac{\text{total flow rate into the reactor}}{\text{volume of the catalyst used}}$$

The carbon balance of each reaction was determined as below :

Carbon balance =
$$\frac{moles \ of \ carbon \ in}{moles \ of \ carbon \ out} \times 100$$

S2. Calculation of response factors (RF):

Assign *n*-octane a RF of 1 and calculate all other Response Factors relative to this:

Mass of *n*-octane in standard solution = 0.0073 g

Mass of trans-2-octene in standard solution = 0.00715g

Injection volume = $0.1 \mu l$

Peak area of n-octane = 46684.56

Peak area of trans-2-octene = 51712.54

The RF of n-octane was considered as 1 and Response Factor calculations was carried out

relative to *n*-octane

Mass of *n*-octane in standard solution = 0.0075

Mass of trans 2-octene in standard solution= 0.00715

Injection volume= $0.1 \mu L$

Peak area of n-octane= 46684.56

Peak area of *trans*-2-octene= 50712.21

peak area of trans-2-octene × mass of n-octane

Response factor of trans-2-octene= mass of trans-2-octene×peak area of n-octane

Injection volume (μl)	Amount of <i>trans</i> 2-	Peak area of trans 2-	Amount of <i>n</i> -octane	Peak area of <i>n</i> -octane	Relative response
	octene	octene	injected		factor (RF)
0.1	0.00071	51714,89	0.000703	46684.56	0.91
0.2	0.00153	113606.4	0.001416	94552.7	0.9
0.3	0.00225	158300.4	0.002109	136843.9	0.91
0.4	0.00285	229129.7	0.002813	205058.5	0.91

Average response factor of *trans* 2-octene= 0.91

Table S1. Retention times, Response factors and gradient of the calibration graph of
compounds

Component	R. T. (min)	R.F	Equation (y=)
1-pentene	2.432	0.93	1.01E+14
2-methyl-2-propanol	2.477	0.72	8.13E+14
<i>n</i> -Pentane	2.37	0.76	8.81E+14
1-hexene	3.52	0.95	1.36E+14
<i>n</i> -Hexane	3.692	0.93	1.32E+14
Methylcyclopentane	4.311	0.92	1.24E+14
<i>n</i> -Heptane	6.98	0.91	1.63E+14
2, 4-dimethylhexane	8.97	0.94	1.79E+14
Toluene	10.47	1.12	1.57E+14
4-methylheptane	11.72	1.14	1.83E+14
1, 7-octadiene	12.52	0.90	1.85E+14
1-octene	13.8	0.98	1.90E+14
3-octene	14.9	0.98	1.75E+14
Trans-4-octene	14.53	0.97	1.83E+14
<i>n</i> -Octane	15.26	1	1.82E+14
Trans-2-octene	15.59	0.94	1.79E+14
1,3-octadiene	16.523	0.92	1.54E+14
Ethyl cyclohexane	16.92	0.90	1.87E+14
Propyl cyclopentane	16.93	1 0.95	1.75E+14
Ethyl benzene	17.58	1.13	1.93E+14
Styrene	18.34	1.17	1.75E+14
xylene	18.49	1.15	1.92E+14

cis-cyclooctene	18.829	1.20	1.78E+14
cyclooctane	19.16	1.16	1.90E+14
cis.cis-1,5-cyclooctadiene	19.52	1.12	1.84E+14
4-octanone	20.839	0.73	1.32E+14
3-octanone	21.28	0.91	1.87E+14
2-octanone	21.394	0.84	1.80E+14
3-octanol	21.83	0.76	1.51E+14
octanal	21.84	0.71	1.40E+14
2-octanol	21.992	0.78	1.46E+14
octene oxide	22.244	0.85	1.61E+14
benzyl alcohol	22.765	0.89	1.28E+14
1-octanol	24.446	0.85	1.86E+14
octanoic acid	26.396	0.61	1.23E+14

S2. Determination of moles of *trans* 2-octene from a liquid organic sample

Mass of the organic layer = 1.786 g Percentage peak area of *trans* 2-octene = 0.91 Calculated Response Factor = 1.0519

Corrected area = Percentage peak area \div Response factor = $0.91 \div 1.0519 = 0.9677$

Normalised area (%) =
$$\frac{\text{corrected area}}{\text{Sum of corrected areas of all the products in sample}} \times 100$$

= 0.866
Mass
Component $\frac{(g)}{100}$ = normalised area
 $\frac{(0.8601 \times 1.786)}{100}$ = 0.01525gm

mass of component

Moles component out (moles) = $\frac{1}{\text{molar mass of component}}$

 $= \frac{0.01525}{112.21} = 0.000135$

Moles of carbon out = moles component out \times carbon number

= 0.001087 moles of carbon

S3. Determination of moles of butane from a gaseous organic sample

The gaseous samples were identified with the help of GCMS and their

quantification was carried out by using methane as a standard gas by using the

equation below

Initially, the constant was derived by using equation

Constant= (Rf of methane/Area of methane) \times Vol. % of methane

The values obtained by injecting $0.2 \,\mu$ L in the GC-FID are

Injection volume= $0.2 \ \mu L$ Methane area= 90000

Methane Rf=1

 $Constant = (1/90000) \times 0.02$

 $= 2.22 \times 10^{-7}$

Ethylene area from gaseous sample from reaction= 17629.91 Corrected area=

Area/ Rf

Further, the corrected area was entered in the following formula to get the Mol. %, Mol. %= Corrected area × constant × (molecular weight of methane/ molecular

weight of unknown)

Mol. % = $17629.91 \times 2.22 \times 10^{-7} \times (16/28)$ Mol % = 0.223871%

Then, the volume of gas out was calculated from Mol. % Volume of gas out= Mol.

% × gas out/min

= 0.0538 mL/min

Moles out were calculated by using ideal gas equation

PV=nRT

Where,

P= 10000 Pa

V= 0.0538 ml/min

 $R = 8.314L \text{ kPa } \text{K}^{-1} \text{ mol}^{-1} \text{ T} = 298 \text{K}$

Number of moles of ethylene =100000Pa×0.0538 ml/min ×0.000001/ (8.314 kPa K^{-1}

	$mol^{-1} \times 298K$)
	= 0.00000217
Moles of Carbon	$= 0.00000217 \times 2$
	= 0.00000434
Total moles of Carbon	$= 0.00000434 \times \text{Reaction time (min.)}$
	= 0.00000434 × 120min.
	= 0.00052