Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Electro- and Photoelectro- Catalysts Derived from Bimetallic Amorphous Metal-Organic Frameworks

Javier Fonseca*, and Sunho Choi*

Nanomaterial Laboratory for Catalysis and Advanced Separations, Department of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, 360 Huntington Avenue, Boston, Massachusetts 02115-5000, United States

> * Corresponding Author. E-mail: fonsecagarcia.j@northeastern.edu

Table of Contents

1. Supplementary Figures	5								
Figure S1. ¹ H NMR (500 MHz, CDCl ₃) spectra of 4'-(2-furyl)-2,2':6',2"-terpyridine	5								
Figure S2. DSC of 4'-(2-furyl)-2,2':6',2"-terpyridine	6								
Figure S3. ¹ H NMR (500 MHz, CD ₃ CN) spectra of (FeTpyCOOH)(PF ₆) ₂									
Figure S4. DSC of (FeTpyCOOH)(PF ₆) ₂	8								
Figure S5. ¹ H NMR (500 MHz, DMSO-d ₆) spectra of [2,2':6',2"-terpyridine]-4'-carboxylic	c acid								
Figure S6. DSC of [2,2':6',2"-terpyridine]-4'-carboxylic acid	10								
Figure S7. ¹ H NMR (500 MHz, DMSO-d ₆) spectra of (Ru(terpy*) ₂)(PF ₆) ₂	11								
Figure S8. DSC of (Ru(terpy*) ₂)(PF ₆) ₂	12								
Figure S9. Coordinates of each atom in the local molecular structure of zinc within NEU-	513								
Figure S10. X-ray absorption spectrum at the Zn K-edge of the NEU-5	15								
Figure S11. Coordinates of each atom in the local molecular structure of iron within N	EU-5. 16								
Figure S12. X-ray absorption spectrum at the Fe K-edge of the NEU-5	18								
Figure S13. EDX characterization of NEU-5	19								
Figure S14. EDX characterization of NEU-5	20								
Figure S15. EDX characterization of NEU-6	21								
Figure S16. EDX characterization of NEU-6	22								
Figure S17. EDX characterization of NEU-7	23								
Figure S18. EDX characterization of NEU-7	24								
Figure S19. EDX characterization of NEU-8	25								
Figure S20. EDX characterization of NEU-8	26								
Figure S21. TGA of NEU-5	27								
Figure S22. TGA of NEU-6	28								
Figure S23. TGA of NEU-7	29								
Figure S24. TGA of NEU-8	30								
Figure S25. Nitrogen adsorption/desorption isotherms of pristine NEU-5 and Fe ₂ P@PN	VDCN. 31								
Figure S26. Nitrogen adsorption/desorption isotherms of pristine NEU-6 and RuP@PN	NDCN. 32								
Figure S27. Nitrogen adsorption/desorption isotherms of pristine NEU-7 Fe ₃ O ₄ /RuO ₂ @NEU-7	and 33								
Figure S28. Nitrogen adsorption/desorption isotherms of pristine NEU-8 $Ru_2O/TiN/TiO_2@NEU-8$.	and 34								
Figure S29. DFT pore analysis of pristine NEU-5 and Fe ₂ P@PNDCN.	35								
Figure S30. DFT pore analysis of pristine NEU-6 and RuP@PNDCN.	36								
Figure S31. DFT pore analysis of pristine NEU-7 and Fe ₃ O ₄ /RuO ₂ @NEU-7	37								

Figure S32. DFT pore analysis of pristine NEU-8 and Ru ₂ O/TiN/TiO ₂ @NEU-8	38
Figure S33. EDX characterization of Fe ₂ P@PNDCN.	39
Figure S34. EDX characterization of Fe ₂ P@PNDCN.	40
Figure S35. EDX characterization of RuP@PNDCN.	41
Figure S36. EDX characterization of RuP@PNDCN.	42
Figure S37. EDX characterization of Fe ₃ O ₄ /RuO ₂ @NEU-7	43
Figure S38. EDX characterization of Fe ₃ O ₄ /RuO ₂ @NEU-7	44
Figure S39. EDX characterization of Ru ₂ O/TiO/TiO ₂ @NEU-8	45
Figure S40. EDX characterization of Ru ₂ O/TiO/TiO ₂ @NEU-8	46
Figure S41. Particle size distribution of Fe2P in Fe2P@PNDCN	47
Figure S42. Particle size distribution of RuP in RuP@PNDCN	48
Figure S43. Particle size distribution of Fe_3O_4 and RuO_2 in $Fe_3O_4/RuO_2@NEU-7$	49
Figure S44. Particle size distribution of Ru ₂ O, TiN and TiO ₂ in Ru ₂ O/TiN/TiO ₂ @NEU-8	50
Figure S45. CVs of Fe ₂ P@PNDCN catalyst	51
Figure S46. Polarization curves of $Fe_2P@PNDCN$ initially and after 5000 cyclic voltammet sweeps. Recorded in O ₂ -saturated 0.5 M H ₂ SO ₄ electrolyte, measured at a scan rate of 50 mV ¹ . Catalyst loading: 0.8 mg cm ⁻² (with iR compensation).	try / s ⁻ 52
Figure S47. (a) XRD, (b) SEM and (c) TEM of $Fe_2P@PNDCN$ after the stability test in C saturated 0.5 M H_2SO_4 electrolyte) ₂ - 53
Figure S48. Polarization curves of Fe ₂ P@PNDCN initially and after 5000 cyclic voltammet sweeps. Recorded in O ₂ -saturated 0.1 M HClO ₄ electrolyte, measured at a scan rate of 50 mV ¹ . Catalyst loading: 0.8 mg cm ⁻² (with iR compensation).	try / s ⁻ 54
Figure S49. (a) XRD, (b) SEM and (c) TEM of $Fe_2P@PNDCN$ after the stability test in C saturated 0.1 M HClO ₄ electrolyte.) ₂ - 55
Figure S50. Polarization curves of $Fe_2P@PNDCN$ initially and after 5000 cyclic voltammet sweeps. Recorded in O ₂ -saturated 1 M KOH electrolyte, measured at a scan rate of 50 mV s Catalyst loading: 0.8 mg cm ⁻² (with iR compensation)	try s ⁻¹ . 56
Figure S51. (a) XRD, (b) SEM and (c) TEM of $Fe_2P@PNDCN$ after the stability test in C saturated 1 M KOH electrolyte) ₂ - 57
Figure S52. Polarization curves of RuP@PNDCN initially and after 5000 cyclic voltammet sweeps. Recorded in H ₂ -saturated 0.5 M H ₂ SO ₄ electrolyte, measured at a scan rate of 50 mV ¹ . Catalyst loading: 0.285 mg cm ⁻² (with iR compensation)	:ry / s- 58
Figure S53. (a) XRD, (b) SEM and (c) TEM of RuP@PNDCN after the stability test in H saturated 0.5 M H_2SO_4 electrolyte	I₂- 59
Figure S54. Polarization curves of RuP@PNDCN initially and after 5000 cyclic voltammet sweeps. Recorded in H_2 -saturated 1 M KOH electrolyte, measured at a scan rate of 50 mV s Catalyst loading: 0.285 mg cm ⁻² (with iR compensation)	ry s ⁻¹ . 60
Figure S55. (a) XRD, (b) SEM and (c) TEM of RuP@PNDCN after the stability test in H saturated 1 M KOH electrolyte	₁₂- 61
Figure S56. LSVs of the Fe ₃ O ₄ /RuO ₂ @NEU-7 catalyst	62
Figure S57. Polarization curves of $Fe_3O_4/RuO_2@NEU-7$ initially and after 5000 cyc voltammetry sweeps. Recorded in O_2 -saturated 1 M KOH electrolyte, measured at a scan rate of 50 mV s ⁻¹ . Catalyst loading: 0.255 mg cm ⁻² (with iR compensation)	lic ate 63

Figure S58. (a) XRD, (b) SEM and (c) TEM of Fe ₃ O ₄ /RuO ₂ @NEU-7 after the stability test in O ₂ saturated 1 M KOH electrolyte	2- 4
Figure S59. Polarization curves of $Ru_2O/TiN/TiO_2@NEU-8$ initially and after 5000 cyclic voltammetry sweeps in dark. Recorded in H ₂ -saturated 0.5 M H ₂ SO ₄ electrolyte, measured at scan rate of 50 mV s ⁻¹ . Catalyst loading: 0.285 mg cm ⁻² (with iR compensation)	ic a 5
Figure S60. (a) XRD, (b) SEM and (c) TEM of Ru ₂ O/TiN/TiO ₂ @NEU-8 after the stability test i dark in H ₂ -saturated 0.5 M H ₂ SO ₄ electrolyte6	n 6
Figure S61. Polarization curves of $Ru_2O/TiN/TiO_2@NEU-8$ initially and after 5000 cyclic voltammetry sweeps in light. Recorded in H ₂ -saturated 0.5 M H ₂ SO ₄ electrolyte, measured at scan rate of 50 mV s ⁻¹ . Catalyst loading: 0.285 mg cm ⁻² (with iR compensation)	ic a 7
Figure S62. (a) XRD, (b) SEM and (c) TEM of Ru ₂ O/TiN/TiO ₂ @NEU-8 after the stability test i light in H ₂ -saturated 0.5 M H ₂ SO ₄ electrolyte6	n 8
Figure S63. UV/Vis spectrum of NEU-8 and Ru ₂ O/TiN/TiO ₂ @NEU-86	9
Figure S64. Comparison between trends in activities for the ORR, expressed as half-wav potential in acidic electrolyte	re 0
Figure S65. Comparison between trends in activities for the ORR, expressed as half-wav potential in basic electrolyte	re 1
Figure S66. Comparison between trends in activities for the HER in acidic electrolyte	2
Figure S67. Comparison between trends in activities for the HER in basic electrolyte	3
Figure S68. Comparison between trends in activities for the OER in acidic electrolyte	4
Figure S69. Comparison between trends in activities for the OER in basic electrolyte	5
2. Supplementary Tables	6
Table S1. Summaries of the EXAFS fitting results of the NEU-5 to determine the local moleculastructure of zinc within the MOF7	ır 6
Table S2. Summaries of the EXAFS fitting results of the NEU-5 to determine the local moleculastructure of iron within the MOF7	ır 7
Table S3. BET surface area and total pore volume of NEU-5, NEU-6, NEU-7 and NEU-8, as we as Fe ₂ P@PNDCN, RuP@PNDCN, Fe ₃ O ₄ /RuO ₂ @NEU-7 and Ru ₂ O/TiN/TiO ₂ @NEU-87	11 9
Table S4. Reported catalysts for ORR in acidic electrolyte	0
Table S5. Reported catalysts for ORR in alkaline electrolyte. 8	2
Table S6. Reported catalysts for HER in acidic electrolyte	3
Table S7. Reported catalysts for HER in alkaline electrolyte. 8	4
Table S8. Reported catalysts for OER in acidic electrolyte	5
Table S9. Reported catalysts for OER in alkaline electrolyte	6
3. References	7

1. Supplementary Figures

Figure S1. ¹H NMR (500 MHz, CDCl₃) spectra of 4'-(2-furyl)-2,2':6',2''-terpyridine: $\delta = 8.74$ (d, J = 4.6 Hz, 2H), 8.72 (s, 2H), 8.64 (d, J = 7.9 Hz, 2H), 7.90–7.84 (m, 2H), 7.59 (s, 1H), 7.35 (dd, J = 6.7, 5.4 Hz, 2H), 7.12 (d, J = 3.3 Hz, 1H), 6.57 (d, J = 1.5 Hz, 1H) ppm. 4'-(2-furyl)-2,2':6',2''-terpyridine structure is confirmed by ¹H NMR.

Figure S2. DSC of 4'-(2-furyl)-2,2':6',2''-terpyridine. The analysis shows the heat of boiling as well as the boiling temperature of 4'-(2-furyl)-2,2':6',2''-terpyridine. The boiling point depression due to impurities in the sample is zero.

Figure S3. ¹H NMR (500 MHz, CD₃CN) spectra of (FeTpyCOOH)(PF₆)₂: $\delta = 9.40$ (s, 4 H), 8.68 (d, J = 8.1 Hz, 4 H), 7.90 (dt, J = 8.1, 4.6 Hz, 4 H), 7.08 (2 x d, J = 4.6 Hz, 8 H) ppm. (FeTpyCOOH)(PF₆)₂ structure is confirmed by ¹H NMR.

Figure S4. DSC of (FeTpyCOOH)(PF_6)₂. The analysis shows the heat of boiling as well as the boiling temperature of (FeTpyCOOH)(PF_6)₂. The boiling point depression due to impurities in the sample is zero.

Figure S5. ¹H NMR (500 MHz, DMSO-d₆) spectra of [2,2':6',2''-terpyridine]-4'-carboxylic acid: $\delta = 8.85$ (s, 2H), 8.75 (d, 2H), 8.64 (d, 2H), 8.03 (td, 2H), 7.53 (dd, 2H) ppm. [2,2':6',2''-terpyridine]-4'-carboxylic acid structure is confirmed by ¹H NMR.

Figure S6. DSC of [2,2':6',2''-terpyridine]-4'-carboxylic acid. The analysis shows the heat of boiling as well as the boiling temperature of [2,2':6',2''-terpyridine]-4'-carboxylic acid. The boiling point depression due to impurities in the sample is zero.

Figure S7. ¹H NMR (500 MHz, DMSO-d₆) spectra of (Ru(terpy*)₂)(PF₆)₂: δ 9.45 (s, 2H), 9.09 (d, 2H), 8.02 (t, 2H), 7.53 (d, 2H), 7.26 (t, 2H) ppm. (Ru(terpy*)₂)(PF₆)₂ structure is confirmed by ¹H NMR.

Figure S8. DSC of $(Ru(terpy^*)_2)(PF_6)_2$. The analysis shows the heat of boiling as well as the boiling temperature of $(Ru(terpy^*)_2)(PF_6)_2$. The boiling point depression due to impurities in the sample is zero.

Figure S9. Coordinates of each atom in the local molecular structure of zinc within NEU-5. Atom labelling scheme: C = black; O = red; N = blue; Zn = grey; H = pink.

		Fractional	Coordinates	s	Orthogona	I Coordinate	es	
Label	Elmt	х	У	Z	xor[Å]	yor[Å]	zor[Å]	
1. C1	С	0.4995	0.6194	0.4990	8.492	-18.239	-8.683	
2. C2	Ċ	0.4286	0.6427	0.4989	7.287	-18.925	-8.682	
3. C3	Ċ	0.4297	0.6895	0.4991	7.305	-20.303	-8.685	
4. C4	Ċ	0.5681	0.6898	0.4993	9.658	-20.312	-8.689	
5. C5	Č	0.5702	0.6429	0.4992	9.694	-18.931	-8.687	
6 C6	Č	0.2855	0 7080	0 4990	4 854	-20 848	-8 683	
7. C7	č	0.2284	0.7414	0.4989	3.883	-21.831	-8.682	
8. C8	Č	0.2514	0.7864	0.4986	4.274	-23.156	-8.676	
9. C9	Č	0.3305	0.7969	0.4983	5.619	-23.466	-8.671	
10. C10	Č	0.3638	0.7205	0.4988	6.185	-21.216	-8.680	
11. C11	Č	0.7120	0.7093	0.4995	12.105	-20.886	-8.692	
12 C12	Č	0 5029	0 4597	0.7332	8 550	-13 536	-12,759	
13. C13	Č	0.5020	0.4597	0.2719	8.534	-13.536	-4.732	
14 C14	Č	0 5019	0.4603	0 3513	8 533	-13 554	-6.113	
15. C15	č	0.5030	0.4603	0.6538	8.551	-13.554	-11.377	
16. C16	Č	0.6335	0.7212	0 4995	10 770	-21 237	-8 692	
17 C17	Č	0.5023	0.5391	0.6527	8 540	-15 874	-11 358	
18 C18	Č	0.5026	0.5391	0.3524	8 545	-15 874	-6 132	
19 C19	Č	0.6654	0 7979	0.5002	11 312	-23 495	-8 704	
20 C20	Č	0.5028	0 5405	0.2731	8 548	-15 916	-4 752	
21 C21	Č	0 5021	0 5405	0.7320	8 536	-15 916	-12.738	
22. C22	č	0.7447	0.7879	0.5003	12.660	-23.201	-8.706	
23 C23	Č	0.7685	0 7430	0 4999	13.065	-21 878	-8 699	
24 C24	č	0 5024	0.5003	0.2322	8 541	-14 732	-4 041	
25 C25	Č	0.5025	0.5003	0.7730	8 543	-14 732	-13 452	
26. C26	č	0.4951	0.5691	0 4988	8 4 17	-16 758	-8 680	
27 C27	Č	0.6689	0.2036	0 4999	11 372	-5 995	-8 699	
28 C28	č	0 7479	0.2144	0.5011	12,715	-6 313	-8 720	
29 C29	Č	0 7703	0.2596	0.5018	13.096	-7 644	-8 732	
30 C30	č	0.7129	0 2927	0.5013	12,120	-8 619	-8 723	
31 C31	Č	0.6347	0 2799	0.5001	10 790	-8 242	-8 703	
32. C32	č	0.3340	0.2014	0.4964	5.678	-5.930	-8.638	
33 C33	Č	0.3651	0.2782	0 4977	6 207	-8 192	-8 661	
34. C34	č	0.2864	0.2898	0.4974	4.869	-8.533	-8.656	
35 C35	Č	0.5685	0.3107	0 4996	9 665	-9 149	-8 694	
36. C36	č	0.5691	0.3575	0.5000	9.675	-10.527	-8.701	
37 C37	Č	0 4979	0.3805	0 4997	8 465	-11 204	-8 696	
38. C38	č	0.4275	0.3567	0.4989	7.268	-10.503	-8.682	
39 C39	Č	0.4301	0.3098	0 4985	7 312	-9.122	-8 675	
40. C40	Č	0.2303	0.2559	0.4965	3,915	-7.535	-8.640	
41. C41	Č	0.2545	0.2111	0.4959	4.327	-6.216	-8.630	
42. C42	Č	0.5016	0.4307	0.5001	8.528	-12.682	-8.703	
43. H1	H	0.3717	0.3753	0.4987	6.319	-11.051	-8.678	
44. H2	Н	0.3509	0.8322	0.4980	5,966	-24.505	-8.666	
45. H3	H	0.3742	0.6226	0.4986	6.362	-18.333	-8.676	
46. H4	Н	0.6257	0.6241	0.4993	10.637	-18.377	-8.689	
47. H5	H	0.5032	0.4273	0.7640	8.555	-12.582	-13.295	
48. H6	Н	0.7290	0.6734	0.4993	12.394	-19.829	-8.689	
49. H7	H	0.5017	0.4273	0.2411	8.529	-12.582	-4.196	
50. H8	Н	0.5025	0.5005	0.1692	8.543	-14.738	-2.944	
51. H9	H	0.5024	0.5005	0.8359	8.541	-14.738	-14.546	

52. H10	Н	0.8311	0.7342	0.5000	14.129	-21.619	-8.701
53. H11	Н	0.5033	0.5734	0.2438	8.557	-16.884	-4.243
54. H12	Н	0.5016	0.5734	0.7614	8.528	-16.884	-13.250
55. H13	Н	0.7877	0.8156	0.5008	13.392	-24.016	-8.715
56. H14	Н	0.6443	0.8330	0.5004	10.954	-24.529	-8.708
57. H15	Н	0.5020	0.5703	0.6184	8.534	-16.793	-10.761
58. H16	Н	0.5020	0.4298	0.6184	8.534	-12.656	-10.761
59. H17	Н	0.5029	0.4298	0.3867	8.550	-12.656	-6.729
60. H18	Н	0.5029	0.5703	0.3867	8.550	-16.793	-6.729
61. H19	Н	0.2693	0.6720	0.4992	4.578	-19.788	-8.687
62. H20	Н	0.1660	0.7322	0.4990	2.822	-21.560	-8.683
63. H21	Н	0.2079	0.8139	0.4985	3.534	-23.966	-8.675
64. H22	Н	0.3554	0.1663	0.4960	6.042	-4.897	-8.631
65. H23	Н	0.2119	0.1832	0.4951	3.602	-5.395	-8.616
66. H24	Н	0.1676	0.2645	0.4962	2.849	-7.788	-8.635
67. H25	Н	0.2690	0.3256	0.4979	4.573	-9.588	-8.664
68. H26	Н	0.6488	0.1683	0.4994	11.030	-4.956	-8.690
69. H27	Н	0.7916	0.1871	0.5015	13.458	-5.509	-8.727
70. H28	Н	0.8327	0.2689	0.5028	14.157	-7.918	-8.750
71. H29	Н	0.7287	0.3288	0.5018	12.388	-9.682	-8.732
72. H30	Н	0.6232	0.3778	0.5007	10.595	-11.125	-8.713
73. N1	N	0.4991	0.5004	0.6104	8.485	-14.735	-10.622
74. N2	N	0.4988	0.7118	0.4993	8.480	-20.960	-8.689
75. N3	N	0.3857	0.7648	0.4983	6.557	-22.520	-8.671
76. N4	N	0.6108	0.7654	0.4996	10.384	-22.538	-8.694
77. N5	N	0.5020	0.5000	0.3909	8.534	-14.723	-6.802
78. N6	N	0.6133	0.2356	0.4994	10.427	-6.938	-8.690
79. N7	N	0.3883	0.2341	0.4973	6.601	-6.893	-8.654
80. N8	N	0.4997	0.2881	0.4988	8.495	-8.483	-8.680
81. O1	0	0.5660	0.5502	0.4995	9.622	-16.201	-8.692
82. O2	0	0.4333	0.5492	0.4982	7.366	-16.172	-8.670
83. O3	0	0.4304	0.4494	0.4995	7.317	-13.233	-8.692
84. O4	0	0.5631	0.4510	0.5008	9.573	-13.280	-8.715
85. Zn1	Zn	0.4993	0.5004	0.5012	8.488	-14.735	-8.722

Figure S10. X-ray absorption spectrum at the Zn K-edge of the NEU-5 before (a) and after normalization (b).

Figure S11. Coordinates of each atom in the local molecular structure of iron within NEU-5. Atom labelling scheme: C = black; O = red; N = blue; Fe = brown; H = pink.

		Fractional Coordinates			Orth	Orthogonal Coordinates		
Label	Elmt	Х	У	Z	xor[.	Å] yor[Å]	zor[Å]	
1. C1	С	0.5007	0.7007	0.4983	-11.0	-9.889	12.876	
2. C2	С	0.4296	0.6707	0.4984	-10.3	-9.900	12.400	
3. C3	С	0.4307	0.6102	0.4983	-9.60	-8.697	12.208	
4. C4	С	0.5695	0.6097	0.4980	-11.5	-7.512	12.944	
5. C5	С	0.5715	0.6704	0.4981	-12.2	48 -8.692	13.153	
6. C6	С	0.2862	0.5862	0.4984	-7.42	-9.447	11.360	
7. C7	С	0.2290	0.5431	0.4985	-6.10	-9.082	10.916	
8. C8	С	0.2520	0.4848	0.4988	-5.84	1 -7.737	10.855	
9. C9	С	0.3313	0.4713	0.4991	-6.77	-6.800	11.240	
10. C10	С	0.3647	0.5701	0.4986	-8.3	7 -8.465	11.731	
11. C11	С	0.7137	0.5846	0.4978	-13.2	-5.796	13.631	
12. C12	С	0.6350	0.5691	0.4979	-12.0	-6.157	13.162	
13. C13	С	0.6670	0.4701	0.4972	-11.3	-3.933	13.001	
14. C14	С	0.7465	0.4829	0.4970	-12.6	-3.512	13.464	
15. C15	С	0.7703	0.5410	0.4974	-13.5	-4.457	13.786	
16. C16	С	0.4963	0.7657	0.4985	-12.2	-11.20	9 13.066	
17. C17	С	0.4975	0.5279	0.3305	-10.6	-6.404	9.629	
18. C18	С	0.4963	0.5140	0.2513	-10.9	48 -6.091	8.317	
19. C19	С	0.4956	0.4556	0.2288	-10.4	-4.931	7.766	
20. C20	С	0.4961	0.4127	0.2864	-9.63	-4.117	8.547	
21. C21	С	0.4974	0.4292	0.3647	-9.37	-4.480	9.853	
22. C22	С	0.5012	0.5307	0.6662	-8.77	'8 -6.636	15.000	
23. C23	С	0.4998	0.4315	0.6350	-7.85	-4.673	14.175	
24. C24	С	0.5001	0.4164	0.7139	-7.23	-4.421	15.383	
25. C25	С	0.4978	0.3895	0.4311	-8.55	-3.735	10.783	
26. C26	С	0.4974	0.3290	0.4305	-7.89	-2.544	10.576	
27. C27	С	0.4978	0.2993	0.5019	-7.16	-2.000	11.618	
28. C28	С	0.4986	0.3300	0.5725	-7.09	-2.642	12.845	
29. C29	С	0.4989	0.3906	0.5699	-7.77	-3.833	13.002	
30. C30	С	0.5011	0.4603	0.7701	-7.40	-5.313	16.425	

	31. C31	С	0.5016	0.5182	0.7458	-8.182	-6.436	16.228
	32. C32	С	0.4974	0.2343	0.4982	-6.465	-0.719	11.347
	33. Fe1	Fe	0.4994	0.5000	0.4987	-9.394	-5.942	12.225
	34. H1	Н	0.4988	0.3060	0.6284	-6.509	-2.202	13.658
	35. H2	Н	0.3517	0.4257	0.4994	-6.556	-5.728	11.206
	36. H3	Н	0.3751	0.6966	0.4987	-9.842	-10.872	12.197
	37. H4	Н	0.6272	0.6947	0.4980	-13.277	-8.700	13.528
	38. H5	Н	0.7307	0.6309	0.4981	-13.995	-6.565	13.877
	39. H6	Н	0.8331	0.5524	0.4973	-14.544	-4.150	14.157
	40. H7	Н	0.7895	0.4471	0.4965	-12.800	-2.442	13.570
	41. H8	Н	0.6458	0.4246	0.4969	-10.585	-3.215	12.736
	42. H9	Н	0.2699	0.6327	0.4981	-7.707	-10.502	11.418
	43. H10	Н	0.1664	0.5549	0.4983	-5.438	-9.844	10.616
	44. H11	Н	0.2084	0.4494	0.4988	-4.857	-7.408	10.507
	45. H12	Н	0.5015	0.5761	0.6447	-9.404	-7.516	14.806
	46. H13	Н	0.5024	0.5542	0.7886	-8.337	-7.166	17.030
	47. H14	Н	0.5014	0.4492	0.8330	-6.917	-5.131	17.392
	48. H15	Н	0.4996	0.3702	0.7313	-6.622	-3.525	15.508
	49. H16	Н	0.4981	0.5736	0.3506	-11.045	-7.313	10.100
	50. H17	Н	0.4959	0.5492	0.2074	-11.583	-6.762	7.730
	51. H18	Н	0.4946	0.4435	0.1663	-10.650	-4.662	6.727
	52. H19	Н	0.4956	0.3661	0.2705	-9.209	-3.192	8.140
	53. H20	Н	0.4967	0.3027	0.3763	-7.914	-1.998	9.624
	54. N1	Ν	0.5000	0.5813	0.4980	-10.295	-7.540	12.481
	55. N2	N	0.3866	0.5128	0.4991	-7.988	-7.150	11.670
	56. N3	Ν	0.6122	0.5120	0.4977	-11.076	-5.223	12.852
	57. N4	Ν	0.4981	0.4866	0.3862	-9.886	-5.619	10.385
	58. N5	Ν	0.5002	0.4885	0.6118	-8.620	-5.779	13.992
	59. N6	N	0.4987	0.4187	0.5001	-8.488	-4.346	11.981
	60. O1	0	0.5674	0.7902	0.4978	-13.503	-11.089	13.514
	61. O2	0	0.4343	0.7915	0.4992	-11.687	-12.243	12.829
	62. O3	0	0.4980	0.2103	0.5696	-5.795	-0.285	12.408
_	63. O4	0	0.4966	0.2082	0.4365	-6.529	-0.173	10.276

Figure S12. X-ray absorption spectrum at the Fe K-edge of the NEU-5 before (a) and after normalization (b).

Figure S13. EDX characterization of NEU-5. It shows the presence of zinc (~5 % w) and iron (~3 % w) within the sample, as well as that of carbon (~47 % w), nitrogen (~4 % w), oxygen (~12 % w), fluorine (~21 % w), and phosphorus (~8 % w). Weight content was determined in different zones and the average was calculated.

Figure S14. EDX characterization of NEU-5. It shows the presence of zinc (~2 %m) and iron (~2 %m) within the sample, as well as that of carbon (~60 %m), nitrogen (~4 %m), oxygen (~13 %m), fluorine (~16 %m), and phosphorus (~3 %m). Atomic content was determined in different zones and the average was calculated.

Figure S15. EDX characterization of NEU-6. It shows the presence of zinc (~9 %w) and ruthenium (~8 %w) within the sample, as well as that of carbon (~49 %w), nitrogen (~4 %w), oxygen (~8 %w), fluorine (~11 %w), and phosphorus (~11 %w). Weight content was determined in different zones and the average was calculated.

Figure S16. EDX characterization of NEU-6. It shows the presence of zinc ($\sim 2 \ \% m$) and ruthenium ($\sim 2 \ \% m$) within the sample, as well as that of carbon ($\sim 68 \ \% m$), nitrogen ($\sim 4 \ \% m$), oxygen ($\sim 8 \ \% m$), fluorine ($\sim 10 \ \% m$), and phosphorus ($\sim 6 \ \% m$). Atomic content was determined in different zones and the average was calculated.

Figure S17. EDX characterization of NEU-7. It shows the presence of iron (~18 %w) and ruthenium (~2 %w) within the sample, as well as that of carbon (~28 %w), nitrogen (~3 %w), oxygen (~32 %w), fluorine (~7 %w), and phosphorus (~10 %w). Weight content was determined in different zones and the average was calculated.

Figure S18. EDX characterization of NEU-7. It shows the presence of iron (\sim 7 %m) and ruthenium (\sim 1 %m) within the sample, as well as that of carbon (\sim 40 %m), nitrogen (\sim 4 %m), oxygen (\sim 35 %m), fluorine (\sim 7 %m), and phosphorus (\sim 6 %m). Atomic content was determined in different zones and the average was calculated.

Figure S19. EDX characterization of NEU-8. It shows the presence of titanium (~7 %w) and ruthenium (~9 %w) within the sample, as well as that of carbon (~45 %w), nitrogen (~5 %w), oxygen (~11 %w), fluorine (~12 %w), and phosphorus (~11 %w). Weight content was determined in different zones and the average was calculated.

Figure S20. EDX characterization of NEU-8. It shows the presence of titanium (~3 %m) and ruthenium (~2 %m) within the sample, as well as that of carbon (~62 %m), nitrogen (~5 %m), oxygen (~11 %m), fluorine (~11 %m), and phosphorus (~6 %m). Atomic content was determined in different zones and the average was calculated.

Figure S21. TGA of NEU-5 from room temperature to 1000 °C at a rate of 5 °C min⁻¹ under a nitrogen flow. NEU-5 showed a total mass loss of ~49.42 wt% on heating up to 1000 °C. The mass loss occurred in three steps: (1) mass loss of ~4.42 wt% at ~250 °C due to the desorption of trapped moisture, (2) mass loss of ~30.85 wt% on heating up to ~475 °C due to the decomposition of ligated pyridine in axial position, (3) mass loss of ~14.18 wt% on heating up to 800 °C due to the decomposition of the remaining nitrogen-carbon-hydrogen structure.

Figure S22. TGA of NEU-6 from room temperature to 1000 °C at a rate of 5 °C min⁻¹ under a nitrogen flow. NEU-6 showed a total mass loss of ~54.76 wt% on heating up to 1000 °C. The mass loss occurred in three steps: (1) mass loss of ~3.12 wt% at ~150 °C due to the desorption of trapped moisture, (2) mass loss of ~17.07 wt% on heating up to ~350 °C due to the decomposition of ligated pyridine in axial position, (3) mass loss of ~34.15 wt% on heating up to 600 °C due to the decomposition of the remaining nitrogen-carbon-hydrogen structure.

Figure S23. TGA of NEU-7 from room temperature to 1000 °C at a rate of 5 °C min⁻¹ under a nitrogen flow. NEU-7 showed a total mass loss of ~29.57 wt% on heating up to 1000 °C. The mass loss occurred in three steps: (1) mass loss of ~2.06 wt% at ~150 °C due to the desorption of trapped moisture, (2) mass loss of ~5.64 wt% on heating up to ~275 °C due to the decomposition of ligated pyridine in axial position, (3) mass loss of ~21.34 wt% on heating up to 600 °C due to the decomposition of the remaining nitrogen-carbon-hydrogen structure.

Figure S24. TGA of NEU-8 from room temperature to 1000 °C at a rate of 5 °C min⁻¹ under a nitrogen flow. NEU-8 showed a total mass loss of ~65.20 wt% on heating up to 1000 °C. The mass loss occurred in three steps: (1) mass loss of ~6.70 wt% at ~150 °C due to the desorption of trapped moisture, (2) mass loss of ~9.15 wt% on heating up to ~300 °C due to the decomposition of ligated pyridine in axial position, (3) mass loss of ~48.83 wt% on heating up to 600 °C due to the decomposition of the remaining nitrogen-carbon-hydrogen structure.

Figure S26. Nitrogen adsorption/desorption isotherms of pristine NEU-6 and RuP@PNDCN.

Figure S27. Nitrogen adsorption/desorption isotherms of pristine NEU-7 and Fe₃O₄/RuO₂@NEU-7.

Figure S28. Nitrogen adsorption/desorption isotherms of pristine NEU-8 and Ru₂O/TiN/TiO₂@NEU-8.

Figure S29. DFT pore analysis of pristine NEU-5 and Fe₂P@PNDCN.

Figure S30. DFT pore analysis of pristine NEU-6 and RuP@PNDCN.

Figure S31. DFT pore analysis of pristine NEU-7 and Fe₃O₄/RuO₂@NEU-7.

Figure S32. DFT pore analysis of pristine NEU-8 and Ru₂O/TiN/TiO₂@NEU-8.

Figure S33. EDX characterization of Fe₂P@PNDCN. It shows the presence of iron (~15 %w) as well as that of carbon (~78 %w), nitrogen (~3 %w), and phosphorus (~5 %w). Weight content was determined in different zones and the average was calculated.

Figure S34. EDX characterization of $Fe_2P@PNDCN$. It shows the presence of iron (~4 %m) as well as that of carbon (~91 %m), nitrogen (~3 %m), and phosphorus (~2 %m). Atomic content was determined in different zones and the average was calculated.

Figure S35. EDX characterization of RuP@PNDCN. It shows the presence of ruthenium (~34 %w) as well as that of carbon (~49 %w), nitrogen (~1 %w), and phosphorus (~16 %w). Weight content was determined in different zones and the average was calculated.

Figure S36. EDX characterization of RuP@PNDCN. It shows the presence of ruthenium (~8 %m) as well as that of carbon (~80 %m), nitrogen (~1 %m), and phosphorus (~12 %m). Atomic content was determined in different zones and the average was calculated.

Figure S37. EDX characterization of $Fe_3O_4/RuO_2@NEU-7$. It shows the presence of ruthenium (~1 %w) and iron (~44 %w), as well as that of carbon (~8 %w), nitrogen (~5 %w), oxygen (~39 %w), and phosphorus (~3 %w). Weight content was determined in different zones and the average was calculated.

Figure S38. EDX characterization of $Fe_3O_4/RuO_2@NEU-7$. It shows the presence of ruthenium (~1 %m) and iron (~22 %m), as well as that of carbon (~18 %m), nitrogen (~9 %m), oxygen (~48 %m), and phosphorus (~3 %m). Atomic content was determined in different zones and the average was calculated.

Figure S39. EDX characterization of Ru₂O/TiO/TiO₂@NEU-8. It shows the presence of ruthenium (~9 %w) and titanium (~3 %w), as well as that of carbon (~70 %w), nitrogen (~3 %w), oxygen (~11 %w), and phosphorus (~4 %w). Weight content was determined in different zones and the average was calculated.

Figure S40. EDX characterization of Ru₂O/TiO/TiO₂@NEU-8. It shows the presence of ruthenium (~1 %m) and titanium (~1 %m), as well as that of carbon (~83 %m), nitrogen (~3 %m), oxygen (~10 %m), and phosphorus (~2 %m). Atomic content was determined in different zones and the average was calculated.

Figure S41. Particle size distribution of Fe₂P in Fe₂P@PNDCN (obtained by counting more than 100 particles).

Figure S42. Particle size distribution of RuP in RuP@PNDCN (obtained by counting more than 100 particles).

Figure S43. Particle size distribution of Fe_3O_4 and RuO_2 in $Fe_3O_4/RuO_2@NEU-7$ (obtained by counting more than 100 particles).

Figure S44. Particle size distribution of Ru₂O, TiN and TiO₂ in Ru₂O/TiN/TiO₂@NEU-8 (obtained by counting more than 100 particles).

Figure S45. CVs of Fe₂P@PNDCN catalyst recorded in O₂- and Ar-saturated 0.5 M H₂SO₄ electrolyte, measured at the scan rate of 10 mV s⁻¹.

Figure S46. Polarization curves of Fe₂P@PNDCN initially and after 5000 cyclic voltammetry sweeps. Recorded in O₂-saturated 0.5 M H₂SO₄ electrolyte, measured at a scan rate of 50 mV s^{-1} . Catalyst loading: 0.8 mg cm⁻² (with iR compensation).

Figure S47. (a) XRD, (b) SEM and (c) TEM of Fe₂P@PNDCN after the stability test in O_2 -saturated 0.5 M H₂SO₄ electrolyte.

Figure S48. Polarization curves of $Fe_2P@PNDCN$ initially and after 5000 cyclic voltammetry sweeps. Recorded in O₂-saturated 0.1 M HClO₄ electrolyte, measured at a scan rate of 50 mV s⁻¹. Catalyst loading: 0.8 mg cm⁻² (with iR compensation).

Figure S49. (a) XRD, (b) SEM and (c) TEM of Fe₂P@PNDCN after the stability test in O₂saturated 0.1 M HClO₄ electrolyte.

<u>1 µm</u>

Figure S50. Polarization curves of Fe₂P@PNDCN initially and after 5000 cyclic voltammetry sweeps. Recorded in O₂-saturated 1 M KOH electrolyte, measured at a scan rate of 50 mV s⁻¹. Catalyst loading: 0.8 mg cm⁻² (with iR compensation).

Figure S51. (a) XRD, (b) SEM and (c) TEM of Fe₂P@PNDCN after the stability test in O₂-saturated 1 M KOH electrolyte.

Figure S52. Polarization curves of RuP@PNDCN initially and after 5000 cyclic voltammetry sweeps. Recorded in H₂-saturated 0.5 M H₂SO₄ electrolyte, measured at a scan rate of 50 mV s⁻¹. Catalyst loading: 0.285 mg cm⁻² (with iR compensation).

Figure S53. (a) XRD, (b) SEM and (c) TEM of RuP@PNDCN after the stability test in H_2 -saturated 0.5 M H_2 SO₄ electrolyte.

Figure S54. Polarization curves of RuP@PNDCN initially and after 5000 cyclic voltammetry sweeps. Recorded in H₂-saturated 1 M KOH electrolyte, measured at a scan rate of 50 mV s⁻¹. Catalyst loading: 0.285 mg cm⁻² (with iR compensation).

Figure S55. (a) XRD, (b) SEM and (c) TEM of RuP@PNDCN after the stability test in H₂saturated 1 M KOH electrolyte.

Figure S56. LSVs of the Fe₃O₄/RuO₂@NEU-7 catalyst, showing significant current density loss even after one LSV cycle.

Figure S57. Polarization curves of $Fe_3O_4/RuO_2@NEU-7$ initially and after 5000 cyclic voltammetry sweeps. Recorded in O₂-saturated 1 M KOH electrolyte, measured at a scan rate of 50 mV s⁻¹. Catalyst loading: 0.255 mg cm⁻² (with iR compensation).

Figure S58. (a) XRD, (b) SEM and (c) TEM of Fe₃O₄/RuO₂@NEU-7 after the stability test in O₂-saturated 1 M KOH electrolyte.

Figure S59. Polarization curves of Ru₂O/TiN/TiO₂@NEU-8 initially and after 5000 cyclic voltammetry sweeps in dark. Recorded in H₂-saturated 0.5 M H₂SO₄ electrolyte, measured at a scan rate of 50 mV s⁻¹. Catalyst loading: 0.285 mg cm⁻² (with iR compensation).

Figure S60. (a) XRD, (b) SEM and (c) TEM of $Ru_2O/TiN/TiO_2@NEU-8$ after the stability test in dark in H₂-saturated 0.5 M H₂SO₄ electrolyte.

Figure S61. Polarization curves of Ru₂O/TiN/TiO₂@NEU-8 initially and after 5000 cyclic voltammetry sweeps in light. Recorded in H₂-saturated 0.5 M H₂SO₄ electrolyte, measured at a scan rate of 50 mV s⁻¹. Catalyst loading: 0.285 mg cm⁻² (with iR compensation).

Figure S62. (a) XRD, (b) SEM and (c) TEM of Ru₂O/TiN/TiO₂@NEU-8 after the stability test in light in H₂-saturated 0.5 M H₂SO₄ electrolyte.

Figure S64. Comparison between trends in activities for the ORR, expressed as half-wave

potential in acidic electrolyte.

Figure S65. Comparison between trends in activities for the ORR, expressed as half-wave potential in basic electrolyte.

Figure S67. Comparison between trends in activities for the HER in basic electrolyte.

Figure S68. Comparison between trends in activities for the OER in acidic electrolyte.

2. Supplementary Tables

Table S1. Summaries of the EXAFS fitting results of the NEU-5 to determine the localmolecular structure of zinc within the MOF.

Scattering	R (Å)	Ν	$\sigma^2 ({ m \AA}^2)$	
Zn-O ₄₃	1.81920 ± 0.15908	2	0.00911	
Zn-O ₂₁	1.85390 ± 0.18984	1	0.00911	
Zn-N ₁	1.91010 ± 0.05204	2	0.00911	
Zn-O ₃₀	1.90480 ± 0.08131	1	0.00911	
Zn-C ₂₀	2.03870 ± 0.09627	2	0.00911	
Zn-C ₁₆	2.82960 ± 0.04593	1	0.00911	
Zn- C ₁₄	2.86810 ± 0.25040	2	0.02092	
Zn-H ₅₂	2.87280 ± 0.49990	2	0.02092	
Zn-N15-C16	3.05880 ± 0.05165	6	0.01003	
Zn-C ₁	3.51750 ± 0.00389	2	0.01003	
Zn-C ₂₀ -C ₁	3.51880 ± 0.01113	4	0.02629	
Zn-C20-C1-C20	3.52000 ± 0.10376	2	0.00382	
Zn-O ₄₃	3.63840 ± 0.08736	2	0.00902	
Zn-O43-C20	3.76460 ± 0.15603	4	0.00200	
Zn-O ₂₁	3.75870 ± 0.07232	2	0.02156	
Zn-O ₂₁ -C ₄₅	3.80350 ± 0.07232	4	0.00208	

Fits were done at the Zn K-edge in R-space, $k^{1,2,3}$ weighting. 1.0 < R < 3.5 Å and $\Delta k = 3.000 - 12.896$ Å⁻¹ were used for fitting. The fitting result of the E₀ and S²₀ are 1.59962215 ± 0.45005218 eV and 0.93216328 ± 0.05304799, respectively. The goodness of the fit is reflected by $\chi^2_{\nu} = 1250.11$ and R-factor = 0.0045642.

Table S2. Summaries of the EXAFS fitting results of the NEU-5 to determine the localmolecular structure of iron within the MOF.

Scattering	R (Å)	N	σ^2 (Å ²)
Fe-N ₄	1.85220 ± 0.05722	2	0.00116
Fe-N ₂₉	1.93410 ± 0.05722	4	0.00459
Fe-C ₃₆	2.77770 ± 0.05722	8	0.00575
Fe-C ₂₄	2.92430 ± 0.05722	4	0.02344
Fe-N ₄ -C ₅	2.98290 ± 0.05722	8	0.01927
Fe-H ₅₂	3.02150 ± 0.05722	4	0.01927
Fe-N ₂₉ -C ₂₈	3.03950 ± 0.05722	8	0.01927
Fe-N15-C16	3.09540 ± 0.05722	8	0.01927
Fe-N ₄ -N ₁₅	3.13040 ± 0.05722	8	0.01927
Fe-N ₄ -C ₅ -N ₄	3.19820 ± 0.05722	4	0.01927
Fe-N15-C16-N15	3.26660 ± 0.05722	4	0.01927
Fe-N15-C14-N15	3.29130 ± 0.05722	4	0.01927
Fe-N ₂₉ -N ₁₁	3.31630 ± 0.05722	8	0.01927
Fe-N ₄ -N ₃₂	3.32670 ± 0.05722	8	0.01927
Fe-N ₄ -C ₁₄	3.47380 ± 0.05722	8	0.01927
Fe-C ₃₆ -C ₂₈	3.50010 ± 0.05722	8	0.01927
Fe-N ₂₉ -C ₃₆	3.52120 ± 0.05722	8	0.01927
Fe-N ₄ -N ₂₅	3.70440 ± 0.05722	2	0.01927
Fe-N ₄	3.70440 ± 0.05722	2	0.01927
Fe-N15-N11	3.84740 ± 0.05722	4	0.01927
Fe-N ₂₉	3.86830 ± 0.05722	4	0.01927
Fe-N ₁₅	3.86830 ± 0.05722	4	0.01927
Fe-N ₄ -C ₃₁	3.93010 ± 0.05722	8	0.01927
Fe-C14-C16	4.01640 ± 0.05722	8	0.01927
Fe-C ₃₇	4.06710 ± 0.05722	4	0.01927
Fe-C ₃₆ -C ₃₇	4.10750 ± 0.05722	8	0.01927
Fe-C5-N4-C5	4.11370 ± 0.05722	4	0.01927
Fe-C ₂₇	4.11490 ± 0.05722	4	0.01927
Fe-N ₃₂ -C ₁₄	4.12380 ± 0.05722	18	0.01927
Fe-N35-C37	4.14090 ± 0.05722	8	0.01927
Fe-N11-C36	4.14190 ± 0.05722	14	0.01927
Fe-C ₂₈ -C ₂₇	4.14180 ± 0.05722	8	0.01927
Fe-C ₅ -N ₄ -C ₅	4.14480 ± 0.05722	4	0.01927
Fe-C ₃₆ -C ₃₇ -C ₃₆	4.14790 ± 0.05722	4	0.01927
Fe-N ₂₉ -C ₁₀	4.15510 ± 0.05722	16	0.01927
Fe-C ₂₈ -C ₂₇ -C ₂₈	4.16860 ± 0.05722	4	0.01927
Fe-C ₂₅	4.20990 ± 0.05722	4	0.01927
Fe-N ₃₅ -C ₃₇ -N ₃₅	4.21460 ± 0.05722	4	0.01927
Fe-N ₂₉ -C ₂₇	4.21800 ± 0.05722	8	0.01927
Fe-N ₁₅ -C ₃	4.25400 ± 0.05722	8	0.01927
Fe-C ₂₄ -C ₂₅	4.25700 ± 0.05722	8	0.01927
Fe-C16-N15-C16	4.25680 ± 0.05722	4	0.01927
Fe-N ₂₉ -C ₂₅	4.25780 ± 0.05722	8	0.01927

Fe-N ₄ -C ₁₆	4.28920 ± 0.05722	8	0.01927
Fe-C ₁₆ -C ₁₇ -C ₁₆	4.30410 ± 0.05722	4	0.01927
Fe-N ₂₉ -C ₂₅ -N ₂₉	4.30560 ± 0.05722	4	0.01927
Fe-N29-C27-N29	4.32120 ± 0.05722	4	0.01927
Fe-N ₄ -C ₁₅ -N ₄	3.02150 ± 0.05722	4	0.01927

Fits were done at the Fe K-edge in R-space, $k^{1,2,3}$ weighting. 1.0 < R < 3.8 Å and $\Delta k = 3.000 - 12.821$ Å⁻¹ were used for fitting. The fitting result of the E₀ and S²₀ are -3.17785465 ± 1.38773601 eV and 0.66889769 ± 0.08181721, respectively. The goodness of the fit is reflected by $\chi^2_{\nu} = 245.67$ and R-factor = 0.0182571.

Table S3. BET surface area and total pore volume of NEU-5, NEU-6, NEU-7 and NEU-8, as	
well as Fe ₂ P@PNDCN, RuP@PNDCN, Fe ₃ O ₄ /RuO ₂ @NEU-7 and Ru ₂ O/TiN/TiO ₂ @NEU-8.	

Sample	BET	Total pore volume
	$m^2 g^{-1}$	cm ³ g ⁻¹
NEU-5	10.2	0.027
NEU-6	18.2	0.162
NEU-7	174.2	0.262
NEU-8	244.2	0.305
Fe ₂ P@PNDCN	681.4	0.633
RuP@PNDCN	126.5	0.180
Fe ₃ O ₄ /RuO ₂ @NEU-7	92.0	0.255
Ru ₂ O/TiN/TiO ₂ @NEU-8	112.1	0.126

Table S4. Reported catalysts for ORR in acidic electrolyte.

Monometallic	MOF-derived	ORR	catalysts
	nior activea	~~~~	carry beb

Name/Other precursors	Heat treatment temperature (°C)	Electrolyte	Eonset	E _{1/2}	Reference
Fe-NH ₂ -MIL-101	700	0.5 M H ₂ SO ₄	0.92 V vs. RHE	0.67 V vs. RHE	[1]
Co-Im = Co-Imidazolate	750	0.1 M HClO ₄	0.83 V vs. RHE	0.68 V vs. RHE	[2]
ZIF-67 = Co-mIm	750	0.1 M HClO ₄	0.86 V vs. RHE	0.71 V vs. RHE	[3]
ZIF-67 = Co-mIm	900	0.5 M H ₂ SO ₄	0.85 V vs. RHE	0.71 V vs. RHE	[4]
CoCO-Pz = Co-pyrazinedicarboxylate	700	0.5 M H ₂ SO ₄	0.97 V vs. RHE	0.72 V vs. RHE	[5]
S-ZIF-67 = Co-mIm-S	700	0.1 M HClO ₄	0.90 V vs. RHE	0.78 V vs. RHE	[6]

Bimetallic MOF-derived ORR catalysts

Fe-ZIF-8 = Fe-Zn-mIm	900	0.5 M H ₂ SO ₄	0.861 V vs. RHE	0.735 V vs. RHE	[7]
ZIF-67/ZIF-8	1. 1000 (Ar) 2. 950 (NH ₃)	0.1 M HClO ₄	0.93 V vs. RHE	0.76 V vs. RHE	[8]
$Zn_xCo_{1-x}(MeIM)_2$	900	0.1 M HClO ₄		0.761 V vs. RHE	[9]
Fe ₂ P@PNDCN	1050	0.5 M H ₂ SO ₄	0.88 V vs. RHE	0.78 V vs. RHE	This work
Fe ₂ P@PNDCN	1050	0.1 M HClO ₄	0.89 V vs. RHE	0.78 V vs. RHE	This work
Fe-ZIF-8 = Fe-Zn-mIm	950	0.1 M HClO ₄	0.95 V vs. RHE	0.81 V vs. RHE	[10]

Metal doped	l MOFs-based	ORR	catalysts
-------------	--------------	-----	-----------

Zn(Im)2/Tris-1,10-phenanthroline and					
iron (II) perchlorate	1050	0.1 M HClO ₄	0.88 V vs. RHE	0.726 V vs. RHE	[11]
Fe-ZIF-8 = Fe-Zn-mIm/Tris-1,10-	1 1050 (4)				
phenanthroline and iron (II)	1. 1050 (Ar)	0.1 M HClO ₄	0.91 V vs. RHE	0.778 V vs. RHE	[11]
perchlorate	2. 1050 (NH ₃)				
Zn(Im)2/Tris-1,10-phenanthroline and	1. 1050 (Ar)	0.1 M HClO ₄	0.991 V DUE	0.72 M DUE	[10]
iron (II) perchlorate	2. 950 (NH ₃)		0.881 V VS. KHE	0.73 V VS. KHE	[12]
Zn(4abIm) ₂ /Tris-1,10-phenanthroline	1. 1050 (Ar)	0.1 M HClO ₄	0.004 V vo. BHE	0.76 V vo PHE	[12]
and iron (II) perchlorate	2. 950 (NH ₃)		0.904 V VS. KHE	0.76 V VS. KHE	[12]
ZIF-8/Tris-1,10-phenanthroline and	1. 1050 (Ar)	0.1 M HCIO	0.002 V ve PHE	0.76 V vs PHE	[12]
iron (II) perchlorate	2. 950 (NH ₃)	0.1 M HClO4	0.902 V VS. KHE	0.70 V V3. KHL	[12]
Zn(eIm) ₂ /Tris-1,10-phenanthroline and	1. 1050 (Ar)		0.914 V vs. RHE	0.78 V vs. RHE	[12]
iron (II) perchlorate	2. 950 (NH ₃)	0.1 W HC104			[12]
ZIF-8/1,10-phenanthroline and iron (II)	1. 1050 (Ar)	0.1 M HCIO	0.1 M HClO ₄ 0.93 V vs. RHE	077 V vs RHE	[13]
acetate	2. 1050 (NH ₃)	0.1 W Hel04		0.77 V VS. KHE	[15]
Fe-ZIF-8 = Fe-Zn-mIm/1,10-	1. 1050 (Ar)	0.1 M HClO	0.98 V vs BHE	0.78 V vs RHF	[14]
phenanthroline and iron (II) acetate	2. 1050 (NH ₃)	0.1 W Hel04	0.98 V VS. KHE	0.76 V VS. KIIL	[14]
Co(PTP)/ Dicyandiamide and Iron	1000	0.5 M H2SO4	0.95 V vs RHF	079 V vs RHF	[15]
acetate (II)	1000	0.5 W H ₂ 504	0.95 V V3. KIIL	0.79 V VS. KIIL	[15]
ZIF-8/Tris-1,10-phenanthroline and	1. 1000 (Ar)	0.5 M H2SO4	0.93 V vs. RHF	0.80 V vs. RHF	[16]
iron (II) perchlorate	2. 900 (NH ₃)	0.5 11 112504	0.55 7 75. RHL	0.00 7 73. RHL	[10]
Fe-ZIF-8	1000 (Ar)	0.1 M HClO4	0.95 V vs. RHE	0.82 V vs. RHE	[17]

Metal doped MOFs-based ORR catalysts

nMn-NC/Mn-doped ZIF-8	1100	0.5 M H ₂ SO ₄	 0.80 V vs. RHE	[18]
nCo-NC/nCo-ZIF-8	1100	0.5 M H ₂ SO ₄	 0.80 V vs. RHE	[19]

FeN4 embedded into the carbon planes/				
Cyanamide, FeCl ₃ , Carbon (Black	900 (N ₂)	0.5 M H ₂ SO ₄	 0.80 V vs. RHE	[20]
Pearls 2000), PANI				
FeN4 embedded into the carbon planes/	1100	0.5 M H2SO4	 0.85 V vs. RHF	[21]
Fe-ZIF	1100	0.5 W 112504	 0.05 V V3. KIIL	[21]
		-		-

Table S5. Reported catalysts for ORR in alkaline electrolyte.

Name	Support	Electrolyte	Eonset	E _{1/2}	Reference
Cu(phen-NO ₃)(BTC) = Cu(nitrophenanthroline)(BTC)	CNTs@TiO2	0.1 M KOH	0.988 V vs. RHE	0.805 V vs. RHE	[22]
Co-MOF = Co-benzimidazolate	CNTs	0.1 M KOH	0.91 V vs. RHE	0.82 V vs. RHE	[23]
ZIF-67 = Co-methyl-imidazolate	pomelo-peel-derived carbon	0.1 M KOH		0.82 V vs. RHE	[24]

Supported or pristine MOF ORR catalysts

Name	Heat treatment temperature (°C)	Electrolyte	Eonset	E _{1/2}	Reference
ZIF-67 = Co-mIm	700	0.1 M KOH	0.97 V vs. RHE	0.87 V vs. RHE	[39]
Fe-NH ₂ -MIL-101	700	0.1 M KOH	0.99 V vs. RHE	0.84 V vs. RHE	[1]
S-ZIF-67 = Co-mIm-S	700	0.1 M KOH	0.98 V vs. RHE	0.88 V vs. RHE	[6]
Fe-ZIF-8 = Fe-Zn-mIm	1. 1050 (Ar) 2. 1050 (NH3)	0.1 M KOH	1.05 V vs. RHE	0.87 Vvs. RHE	[14]
ZIF-67 = Co-mIm	900	0.1 M KOH	0.94 V vs. RHE	0.8 V vs. RHE	[25]
PB = Prussian blue	800	0.1 M KOH	0.95 V vs. RHE	0.82 V vs. RHE	[26]
Fe-ZIF-8 = Fe-pyrrole-Zn-mIm	800	0.1 M KOH	0.96 V vs. RHE	0.83 V vs. RHE	[27]
MOF-253 = Fe-Al(OH)(bpydc)	900	0.1 M KOH	0.98 V vs. RHE	0.84 V vs. RHE	[28]
NiCoTU@NH2-MIL-101(Al) = NiCo- thiourea-NH2-MIL-101(Al)	900	0.1 M KOH	0.94 V vs. RHE	0.86 V vs. RHE	[29]
Fe-ZIF-8 = Fe-Zn-mIm	950	0.1 M KOH	0.975 V vs. RHE	0.867 V vs. RHE	[30]
ZIF-67 = Co-mIm	800	0.1 M KOH	0.938 V vs. RHE	0.869 V vs. RHE	[31]
ZIF-67/ZIF-8 = Co-mIm/Zn-mIm	950	0.1 M KOH	1.0 V vs. RHE	0.87 V vs. RHE	[32]
$Co_3(PO_4)_2C-N/rGOA = Co_3(O_3PCH_2-NC_4H_7-CO_2)_2$	800	0.1 M KOH	0.968 V vs. RHE	0.872 V vs. RHE	[33]
Fe/IRMOF-3 = Fe(Zn-NH ₂ -BDC)	900	0.1 M KOH	1.02 V vs. RHE	0.88 V vs. RHE	[34]
Co@NC	900	0.1 M KOH	0.97 V vs. RHE	0.88 V vs. RHE	[35]
ZIF-67/ZIF-8 = Co-mIm/Zn-mIm	900	0.1 M KOH	0.982 V vs. RHE	0.881 V vs. RHE	[36]
S-ZIF-67 = Co-mIm-S	700	0.1 M KOH	0.97 V vs. RHE	0.9 V vs. RHE	[37]
ZIF-67/ZIF-8 = Co-mIm/Zn-mIm	850	0.1 M KOH	0.992 V vs. RHE	0.91 V vs. RHE	[38]
Fe ₂ P@PNDCN	1050	1 М КОН	0.95 V vs. RHE	0.91 V vs. RHE	This work

MOF-derived ORR catalysts

Table S6. Reported catalysts for HER in acidic electrolyte.

Name	Electrolyte	Catalyst Loading	$\begin{array}{l} Overpotential \\ (j=10 \ mA \ cm^{-2}) \\ (mV) \end{array}$	Tafel slope (mV dec ⁻¹)	$\begin{array}{c} Overpotential \\ (j=10 \ mA \ cm^{-2}) \\ after \ certain \ cycles \end{array}$	Reference
$[(CH_3)_4N]_2[Mo_2O_2(\mu\text{-}S)_2(S_2)_2]$	1 M H ₂ SO ₄	2.85 µmol/cm ²	114 ± 3	52	132, 1000th	[40]
$[(CH_3)_4N]_2[Mo_2O_2(\mu\text{-}S)_2(S_2)(S_4)]$	1 M H ₂ SO ₄	2.85 µmol/cm ²	114 ± 2	55	About 140, 1000th	[40]
$[(CH_3)_4N]_2[W_2O_2(\mu\text{-}S)_2(S_2)(S_4)]$	1 M H ₂ SO ₄	2.85 µmol/cm ²	227 ± 2	100	About 235, 1000th	[40]
S-600	0.1 M H ₂ SO ₄	0.285 mg/cm ²	262	74	276, 2000th; 286,10000th	[41]
FeCo@NCNTs-NH	0.1 M H ₂ SO ₄	0.32 mg/cm ²	276	96	About 350, 10 000th	[42]
CoNi@NC (475 °C)	0.1 M H ₂ SO ₄	0.32 mg/cm ²	224	104	About 260, 1000th	[43]
Ru@C ₂ N	0.5 M H ₂ SO ₄	0.285 mg/cm^2	22	30	13.5, 10000th	[44]
Pt/C	0.5 M H ₂ SO ₄	0.285 mg/cm^2	16	27	About 55, 10000th	[44]
[Mo ₃ S ₁₃] ²⁻ clusters	0.5 M H ₂ SO ₄	0.100 mg/cm ²	180	40	About 195, 1000th	[45]
CoPS nanoplate	0.5 M H ₂ SO ₄		48	56		[46]
CoPS NWs	0.5 M H ₂ SO ₄		61	48		[46]
CoPS film	0.5 M H ₂ SO ₄		128	57		[46]
SV-MoS ₂	0.5 M H ₂ SO ₄		170	60		[47]
V-MoS ₂	0.5 M H ₂ SO ₄		250	82		[47]
Exfoliated WS2 nanosheets	0.5 M H ₂ SO ₄	6.5 µg/cm ²	About 234	55		[48]
CoMoS _x	0.1 M HClO ₄	50 µg/cm ²	About 207			[49]
Mesoporous MoS ₂	0.5 M H ₂ SO ₄	60 µg/cm ²	About 233	50		[50]
A-Ni–C	0.5 M H ₂ SO ₄	0.283 mg/cm ²	34	41	About 45, 8000th	[51]
CoS P/CNT	0.5 M H ₂ SO ₄	1.6 mg/cm ²	64	55	About 80, 2000th	[52]
M-MoS ₂	0.5 M H ₂ SO ₄	43 µg/cm ²	175	41	About 180, 1000th	[53]
WO _{2.9}	0.5 M H ₂ SO ₄	0.285 mg/cm^2	70	50	About 70, 1000th	[54]
MoS ₂ /CoSe ₂	0.5 M H ₂ SO ₄	0.285 mg/cm^2	68	36		[55]
CoN _x /C	0.5 M H ₂ SO ₄	2 mg/cm ²	133	57	144, 5000th	[56]
Edge-terminated MoS ₂	0.5 M H ₂ SO ₄	0.28 mg/cm ²	149	49	About 155, 3000th	[57]
C ₃ N ₄ @NG	0.5 M H ₂ SO ₄	0.1 mg/cm ²	240	51.5	About 250, 1000th	[58]
Co-NG	0.5 M H ₂ SO ₄	0.285 mg/cm^2	147	82	About 155, 1000th	[59]
MoC _x nano-octahedrons	0.5 M H ₂ SO ₄	0.8 mg/cm ²	142	53	About 167, 1000th	[60]
Pt-MoS ₂	0.5 M H ₂ SO ₄	75 µg/cm ²	53	40		[61]
Pt MLAg NF/Ni foam	0.5 M H ₂ SO ₄		About 70	53		[62]
AB&Co-Cl ₄ -MOF(3:4)	0.5 M H ₂ SO ₄		283	86	About 285, 1000th	[63]
AB&CTGU-9 (3:4)	0.5 M H ₂ SO ₄	About 0.0706 mg/cm ²	128	87	About 128, 21h	[64]
MoP@PC	0.5 M H ₂ SO ₄	0.41 mg/cm ²	153	66	About 155, 2000th	[65]
RuP@PNDCN	0.5 M H ₂ SO ₄	0.285 mg/cm ²	65	50		This work
Pristine Ru ₂ O/TiN/TiO ₂ @ PNDCN	0.5 M H ₂ SO ₄	0.285 mg/cm ²	67	51		This work
Ru ₂ O/TiN/TiO ₂ @PNDCN(dark)	0.5 M H ₂ SO ₄	0.285 mg/cm ²	65	50		This work
Ru ₂ O/TiN/TiO ₂ @PNDCN(light)	0.5 M H ₂ SO ₄	0.285 mg/cm ²	33	34		This work

			Overpotential	T (1)	Overpotential	
Name	Electrolyte	Catalyst Loading	$(j = 10 \text{ mA cm}^{-2})$	1 arel slope	$(j = 10 \text{ mA cm}^{-2})$	Reference
			(mV)	(mV dec ⁻¹)	after certain cycles	
Ru@C ₂ N	1.0 M KOH	0.285 mg/cm ²	17	38	about 45, 10000th	[44]
Pt/C	1.0 M KOH	0.285 mg/cm^2	20.7	43		[44]
CoN _x /C	0.1 M KOH	2 mg/cm ²	170	75		[56]
MoCx nano-octahedrons	1.0 M KOH	0.8 mg/cm ²	151	59	About 195, 3000th	[60]
S-4	1.0 M KOH	0.275 mg/cm ²	28	31	32, 10000th	[66]
CoMoS _x	0.1 M KOH	50 µg cm–2	About 158 (j = 5 mA cm ^{-2})			[67]
Co(OH) ₂ /Pt(111)	0.1 M KOH		About 248			[68]
np-CuTi	0.1 M KOH		About 47	110	About 50, 5000th	[69]
NiO/Ni-CNT	1.0 M KOH	0.28 mg/cm ²	About 86	82		[70]
NiFeO _x /CFP	1.0 M KOH	1.6 mg/cm ²	88	150		[71]
Co@N-CS/N-HCP@CC	1.0 M KOH	About 3.2 mg/cm ²	66	65	About 66, 30 h	[72]
Ni QD@NC@rGO	1.0 M KOH	0.71 mg/cm ²	133	64	About 133, 30 h	[73]
Co-Co ₉ S ₈ @SN-CNT	0.1 M KOH	0.4 mg/cm ²	120	92	139, 5000th	[74]
Co/Co ₉ S ₈ @SNGS	0.1 M KOH	0.305 mg/cm ²	350	96.1		[75]
Ni ₂ P/rGO	1.0 M KOH	0.25 mg/cm ²	142	58	About 145, 2000th	[76]
MoP/NF	1.0 M KOH	0.3 mg/cm ²	114	54.6	About 115, 1000th	[77]
Ni@NC	1.0 M KOH	About 0.31 mg/cm ²	205	160	About 205, 1000th	[78]
FeCo@NGC	1.0 M KOH	0.32 mg/cm ²	211	77	211, 10000th	[79]
NiS ₂ @C	1.0 M KOH	0.21 mg/cm ²	219	157	About 300, 10 h	[80]
ZnCoS-NSCNT/NP	1.0 M KOH	About 0.21 mg/cm ²	152	103	About 155, 1000th	[81]
Co-Ni-Se/C/NF	1.0 M KOH	1.5 mg/cm ²	148	81		[82]
Co _{1.11} Te ₂ /C	1.0 M KOH		178	77.3	About 200, 20 h	[83]
Co-P/NC	1.0 M KOH	0.283 mg/cm ²	154	51	157, 1000th	[84]
Ni ₂ P/C	1.0 M KOH	About 0.34 mg/cm ²	168	63	About 175, 1000th	[85]
NDCHN-35	1.0 M KOH	0.5 mg/cm ²	201	133.2		[86]
Ni-Co-S HPNA	1.0 M KOH		110	56	About 110, 5000th	[87]
Fe ₁ V ₃ -PC/NF	1.0 M KOH		66	37	About 66, 5000th	[88]
RuP@PNDCN	1.0 M KOH	0.285 mg/cm ²	74	59		This work

Table S7. Reported catalysts for HER in alkaline electrolyte.

Name	Electrolyte	Working electrode	Catalyst Loading	Overpotential (j = 10 mA cm ⁻²) (mV)	Tafel slope (mV dec ⁻¹)	Reference
Cr _{0.6} Ru _{0.4} O ₂ (550)	0.5 M H ₂ SO ₄	glassy carbon	0.283 mg/cm ²	178	58	[89]
RuO ₂	0.5 M H ₂ SO ₄	glassy carbon	0.283 mg/cm ²	297	64	[89]
Ir/GF	0.5 M H ₂ SO ₄	graphite foam	0.82 mg/cm ²	290	46	[90]
IrCoNi PHNCs	0.1 M HClO ₄	glassy carbon	$10 \mu g_{Ir}/cm^2$	303	60.1	[91]
$Y_2Ru_2O_{7-\delta}$	0.1 M HClO ₄	glassy carbon		270	55	[92]
BaYIrO ₆	0.1 M HClO ₄	Pt ring–Au disk	$15 \ \mu g_{oxide} / cm_{disk}{}^2$	~315	219	[93]
RuO2/Co3O4-RuCo@NC	0.5 M H ₂ SO ₄	glassy carbon	0.35 mg/cm ²	247	89	[94]
MnO ₂	1 M H ₂ SO ₄			489	80	[95]
Co ₃ O ₄ /FTO	0.5 M H ₂ SO ₄			570	80	[96]
NiFeP	0.05 M H ₂ SO ₄	glassy carbon		540		[97]
$Sr_{0.9}Na_{0.05}RuO_3$	0.1 M HClO ₄	glassy carbon	0.51 mg/cm ²	120	~40	[98]
Fe ₃ O ₄ /RuO ₂ @NEU-7	0.5 M H ₂ SO ₄	glassy carbon	0.255 mg/cm ²	450	305	This work

Table S8. Reported catalysts for OER in acidic electrolyte.

	Electrolyte	Working electrode	Catalyst Loading	Overpotential	Tafel slope	Reference
Name				$(j = 10 \text{ mA cm}^{-2})$		
				(mV)	(III v uec)	
Ni-O-G SACs	1.0 M KOH	Carbon cloth	0.5 mg/cm ²	328	84	[99]
Ni-N-G SACs	1.0 M KOH	Carbon cloth	0.5 mg/cm ²	564	364	[99]
Ni(OH) ₂ /G	1.0 M KOH	Carbon cloth	0.5 mg/cm ²	450	142	[99]
Ce-NiO-E	1.0 M KOH	carbon paper	~0.56 mg/cm ²	382	118.7	[100]
Ce-NiO-L	1.0 M KOH	carbon paper	~0.56 mg/cm ²	426	131.6	[100]
NiO	1.0 M KOH	carbon paper	~0.56 mg/cm ²	467	140.7	[100]
FeNC/NiO	0.1 M KOH	glassy carbon	~0.24 mg/cm ²	390	76	[101]
Commercial RuO ₂	0.1 M KOH	glassy carbon	~0.24 mg/cm ²	380	~91	[101]
Ni/N/C paper	0.1 M KOH	glassy carbon	0.4 mg/cm ²	391	40	[102]
Ni/NG	0.1 M KOH		1.74 mg/cm ²	397	188.6	[103]
Co ₃ O ₄ /N-rmGO	1 M KOH	glassy carbon	0.1 mg/cm ²	310	67	[104]
Mn ₃ O ₄ /CoSe ₂	0.1 M KOH	glassy carbon	$\sim 0.2 \text{ mg/cm}^2$	450	49	[105]
NiCo-UMOFNs	1.0 M KOH	glassy carbon	0.2 mg/cm ²	189	42	[106]
Ni-UMOFNs	1.0 M KOH	glassy carbon	0.2 mg/cm ²	321	65	[106]
Co-UMOFNs	1.0 M KOH	glassy carbon	0.2 mg/cm ²	371	103	[106]
Bulk NiCo-MOFs	1.0 M KOH	glassy carbon	0.2 mg/cm ²	250	61	[106]
CoBDC-NF	1.0 M KOH	glassy carbon	0.35 mg/cm ²	252	63	[107]
CoBDC-Fc-NF	1.0 M KOH	glassy carbon	0.35 mg/cm ²	178	51	[107]
RuO ₂ -NF	1.0 M KOH	glassy carbon	0.35 mg/cm ²	235	88	[107]
FeCo-ONS	0.1 M KOH	glassy carbon	0.36 mg/cm ²	318	38.3	[108]
FeCo-MNS-0.4	0.1 M KOH	glassy carbon	0.36 mg/cm ²	309	24.5	[108]
FeCo-MNS-1.0	0.1 M KOH	glassy carbon	0.36 mg/cm ²	298	21.6	[108]
FeCo-MNS-2.0	0.1 M KOH	glassy carbon	0.36 mg/cm ²	312	23.7	[108]
NiCo/Fe ₃ O ₄ /MOF-74	1.0 M KOH	glassy carbon		238	29	[109]
Fe ₁ Co ₁ -P/C	1.0 M KOH			360	58.4	[110]
Fe3O4/RuO2@NEU-7	1 M KOH	glassy carbon	0.255 mg/cm ²	250	266	This work

Table S9. Reported catalysts for OER in alkaline electrolyte.

3. References

- [1] W. Gu, L. Hu, J. Li, E. Wang, ACS Appl. Mater. Interfaces, 8 (2016) 35281-35288.
- [2] S. Ma, G. A. Goenaga, A. V. Call, D.-J. Liu, Chem. Eur. J., 17 (2011) 2063-2067.

[3] W. Xia, J. Zhu, W. Guo, L. An, D. Xia, R. Zou, J. Mater. Chem. A, 2 (2014) 1160611613.

[4] X. Wang, J. Zhou, H. Fu, W. Li, X. Fan, G. Xin, J. Zheng, X. Li, J. Mater. Chem. A, 2
(2014) 14064-14070.

[5] A. K. Diaz-Duran, F. Roncaroli, Electrochimica Acta, 251 (2017) 638-650.

[6] C. Zhang, B. An, L. Yang, B. Wu, W. Shi, Y.-C. Wang, L.-S. Long, C. Wang, W. Lin,J. Mater. Chem. A, 4 (2016) 4457-4463.

[7] Q. Lai, L. Zheng, Y. Liang, J. He, J. Zhao, J. Chen, ACS Catal., 7 (2017) 1655-1663.

[8] L. Chong, G. A. Goenaga, K. Williams, H. M. Barkholtz, L., R. Grabstanowicz, J. A. Brooksbank, A. B. Papandrew, R. Elzein, R. Schlaf, T. A. Zawodzinski, J. Zou, S. Ma, D.-J. Liu, ChemElectroChem, 3 (2016) 1541-1545.

[9] B. You, N. Jiang, M. Sheng, W. S. Drisdell, J. Yano, J. Sun, ACS Catal., 5 (2015) 7068 7076.

[10] C. Zhang, Y.-C. Wang, B. An, R. Huang, C. Wang, Z. Zhou, W. Lin, Adv. Mater., 29(2017) 1-7.

[11] H. M. Barkholtz, L. Chong, Z. B. Kaiser, D. J. Liu, FUEL CELLS, 16 (2016) 428-433.

[12] D. Zhao, J.-L. Shui, L. R. Grabstanowicz, C. Chen, S. M. Commet, T. Xu, J. Lu, D.-J.Liu, Adv. Mater., 26 (2014) 1093-1097.

[13] K. Strickland, E. Miner, Q. Jia, U. Tylus, N. Ramaswamy, W. Liang, M.-T. Sougrati,F. Jaouen, S. Mukerjee, Nature Communications, 6 (2015) 1-8.

[14] J. Li, Q. Jia, S. Ghoshal, W. Liang, S. Mukerjee, Langmuir, 33 (2017) 9246-9253.

87

[15] Q. Li, P. Xu, W. Gao, S. Ma, G. Zhang, R. Cao, J. Cho, H.-L. Wang, G. Wu, Adv.Mater., 26 (2014) 1378-1386.

[16] J. Shui, C. Chen, L. Grabstanowicz, D. Zhao, D.-L. Liu, PNAS, 112 (2015) 10629-10634.

[17] X. Wang, H. Zhang, H. Lin, S. Gupta, C. Wang, Z. Tao, H. Fu, T. Wang, J. Zheng, G.Wu, X. Li, Nano Energy, 25 (2016) 110-119.

[18] J. Li, M. Chen, D. A. Cullen, S. Hwang, M. Wang, B. Li, K. Liu, S. Karakalos, M. Lucero, H. Zhang, C. Lei, H. Xu, G. E. Sterbinsky, Z. Feng, D. Su, K. L. More, G. Wang, Z. Wang, G. Wu, Nature Catalysis, 1 (2018) 935-945.

[19] X. X. Wang, D. A. Cullen, Y.-T. Pan, S. Hwang, M. Wang, Z. Feng, J. Wang, M. H.
Engelhard, H. Zhang, Y. He, Y. Shao, D. Su, K. L. More, J. S. Spendelow, G. Wu, Adv. Mater.,
30 (2018) 1-11.

[20] H. T. Chung, D. A. Cullen, D. Higgins, B. T. Sneed, E. F. Holby, K. L. More, P. Zelenay, Science, 357 (2017) 479-484.

[21] H. Zhang, S. Hwang, M. Wang, Z. Feng, S. Karakalos, L. Luo, Z. Qiao, X. Xie, C.Wang, D. Su, Y. Shao, G. Wu, J. Am. Chem. Soc., 139 (2017) 14143-14149.

[22] F.-F. Wang, P.-J. Wei, G.-Q. Yu, J.-G. Liu, Chem. Eur. J., 22 (2016) 382-389.

[23] Y. Fang, X. Li, F. Li, X. Lin, M. Tian, X. Long, X. An, Y. Fu, J. Jin, J. Ma, Journal of Power Sources, 326 (2016) 50-59.

[24] H. Wang, F.-X. Yin, B.-H. Chen, X.-B. He, P.-L. Lv, C.-Y. Ye, D.-J. Liu, Applied Catalysis B: Environmental, 205 (2017) 55-67.

[25] C. Lin, S. S. Shinde, Z. Jiang, X. Song, Y. Sun, L. Guo, H. Zhang, J.-Y. Jung, X. Li, J.H. Lee, J. Mater. Chem. A, 5 (2017) 13994-14002.

[26] Y. Liu, H. Wang, D. Lin, J. Zhao, C. Liu, J. Xie, Y. Cui, Nano Research, 10 (2017)1213-1222.

[27] A. Aijaz, J. Masa, C. Rösler, H. Antoni, R. A. Fischer, W. Schuhmann, M. Muhler, Chem. Eur. J., 23 (2017) 12125-12130.

- [28] Y. Wang, X. Chen, Q. Lin, A. Kong, Q.-G. Zhai, S. Xie, P. Feng, Nanoscale, 9 (2017)862-868.
- [29] J. Wang, H. Lu, Q. Hong, Y. Cao, X. Li, J. Bai, Chemical Engineering, 330 (2017)1342-1350.

[30] S. H. Ahn, X. Yu, A. Manthiram, Adv. Mater., 29 (2017) 1-10.

[31] L. Huang, X. Zhang, Y. Han, Q. Wang, Y. Fang, S. Dong, J. Mater. Chem. A., 5 (2017)18610-18617.

[32] S. H. Ahn, M. J. Klein, A. Manthiram, Adv. Energy Mater., 7 (2017) 1-9.

[33] T. Zhou, Y. Du, S. Yin, X. Tian, H. Yang, X. Wang, B. Liu, H. Zheng, S. Qiao, R. Xu, Energy Environ. Sci., 9 (2016) 2563-2570.

[34] H. Sun, H. Su, X. Ma, P. Zhang, X. Zhang, X. Dai, J. Gao, C. Chen, S.-G. Sun, Electrochimica Acta, 205 (2016) 53-61.

[35] S. G. Peera, J. Balamurugan, N. H. Kim, J. H. Lee, Small, 14 (2018) 1-15.

[36] P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G.

Zhou, S. Zhou, Y. Li, Angew. Chem. Int. Ed., 55 (2016) 10800-10805.

[37] J. Xiao, C. Zhao, C. Hu, J. Xi, S. Wang, Journal of Power Sources, 348 (2017) 57-65.

- [38] S. S. A. Shah, L. Peng, T. Najam, C. Cheng, G. Wu, Y. Nie, W. Ding, X. Qi, S. Chen,Z. Wei, Electrochimica Acta, 251 (2017) 498-504.
- [39] B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. Lou, X. Wang, Nature Energy, 1 (2016) 1-8.
- [40] J. McAllister, N. A. G. Bandeira, J. C. McGlynn, A. Y. Ganin, Y.-F. Song, C. Bo, H.N. Miras, Nature Communications, 10 (2019) 1-10.

[41] Y. Yang, Z. Lun, G. Xia, F. Zheng, M. He, Q. Chen, Energy Environ. Sci., 8 (2015)3563-3571.

- [42] J. Deng, P. Ren, D. Deng, L. Yu, F. Yang, X. Bao, Energy Environ. Sci., 7 (2014) 1919-1923.
- [43] J. Deng, P. Ren, D. Deng, X. Bao, Angew. Chem. Int. Ed., 54 (2015) 2100-2104.
- [44] J. Mahmood, F. Li, S.-M. Jung, M. S. Okyay, I. Ahmad, S.-J. Kim, N. Park, H. Y. Jeong,
- J.-B. Baek, Nature Nanotechnology, 12 (2017) 441-447.
- [45] J. Kibsgaard, T. F. Jaramillo, F. Besenbacher, Nature Chemistry, 6 (2014) 248-253.
- [46] M. Cabán-Acevedo, M. L. Stone, J. R. Schmidt, J. G. Thomas, Q. Ding, H.-C. Chang,
- M.-L. Tsai, J.-H. He, S. Jin, Nature Materials, 14 (2015) 1245-1251.
- [47] H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S.
- Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, X. Zheng, Nature Materials, 15 (2016) 48-53.
- [48] D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa,V. B. Shenoy, G. Eda, M. Chhowalla, Nature Materials, 12 (2013) 850-855.
- [49] J. Staszak-Jirkovský, C. D. Malliakas, P. P. Lopes, N. Danilovic, S. S. Kota, K.-C. Chang, B. Genorio, D. Strmcnik, V. R. Stamenkovic, M. G. Kanatzidis, M. M. Markovic, Nature Materials, 15 (2016) 197-203.
- [50] J. Kibsgaard, Z. Chen, B. N. Reinecke, T. F. Jaramillo, Nature Materials, 11 (2012)963-969.
- [51] L. Fan, P. F. Liu, X. Yan, L. Gu, Z. Z. Yang, H. G. Yang, S. Qiu, X. Yao, Nature Communications, 7 (2016) 1-7.
- [52] W. Liu, E. Hu, H. Jiang, Y. Xiang, Z. Weng, M. Li, Q. Fan, X. Yu, E. I. Altman, H.Wang, Nature Communications, 7 (2016) 1-9.

- [53] X. Geng, W. Sun, W. Wu, B. Chen, A. Al-Hilo, M. Benamara, H. Zhu, F. Watanabe, J.Cui, T.-P. Chen, Nature Communications, 7 (2016) 1-7.
- [54] Y. H. Li, P. F. Liu, L. F. Pan, H. F. Wang, Z. Z. Yang, L. R. Zheng, P. Hu, H. J. Zhao,L. Gu, H. G. Yang, Nature Communications, 6 (2015) 1-7.
- [55] M.-R. Gao, J.-X. Liang, Y.-R. Zheng, Y.-F. Xu, J. Jiang, Q. Gao, J. Li, S.-H. Yu, Nature Communications, 6 (2015) 1-7.
- [56] H.-W. Liang, S. Brüller, R. Dong, J. Zhang, X. Feng, K. Müllen, Nature Communications, 6 (2015) 1-8.
- [57] M.-R. Gao, M. K. Y. Chan, Y. Sun, Nature Communications, 6 (2015) 1-8.
- [58] Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S. Z. Qiao, Nature Communications, 5 (2014) 1-8.
- [59] H. Fei, J. Dong, M. J. Arellano-Jiménez, G. Ye, N. D. Kim, E. L. G. Samuel, Z. Peng,
- Z. Zhu, F. Qin, J. Bao, M. J. Yacaman, P. M. Ajayan, D. Chen, J. M. Tour, Nature Communications, 6 (2015) 1-8.
- [60] H. B. Wu, B. Y. Xia, L. Yu, X.-Y. Yu, X. W. Lou, Nature Communications, 6 (2015)1-8.
- [61] X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan, H. Zhang, Nature Communications, 4 (2013) 1-8.
- [62] M. Li, Q. Ma, W. Zi, X. Liu, X. Zhu, S. Liu, Sci. Adv., 1 (2015) 1-7.
- [63] Y.-S. Li, J.-W. Yi, J.-H. Wei, Y.-P. Wu, B. Li, S. Liu, C. Jiang, H.-G. Yu, D.-S. Li, Journal of Solid State Chemistry, 281 (2020) 1-7.
- [64] W. Zhou, Y.-P. Wu, X. Wang, J.-W. Tian, D.-D. Huang, J. Zhao, Y.-Q. Lan, D.-S. Li, CrystEngComm, 20 (2018) 4804-4809.
- [65] J. Yang, F. Zhang, X. Wang, D. He, G. Wu, Q. Yang, X. Hong, Y. Wu, Y. Li, Angew.Chem. Int. Ed., 55 (2016) 12854-12858.

[66] J. Su, Y. Yang, G. Xia, J. Chen, P. Jiang, Q. Chen, Nature Communications, 8 (2017)1-10.

[67] J. Staszak-Jirkovský, C. D. Malliakas, P. P. Lopes, N. Danilovic, S. S. Kota, K.-C. Chang, B. Genorio, D. Strmcnik, V. R. Stamenkovic, M. G. Kanatzidis, N. M. Markovic, Nature Materials, 15 (2016) 197-203.

[68] R. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit,M. Chan, J. Greeley, V. Stamenkovic, N. M. Markovic, Nature Materials, 11 (2012) 550-557.

[69] Q. Lu, G. S. Hutchings, W. Yu, Y. Zhou, R. V. Forest, R. Tao, J. Rosen, B. T. Yonemoto,

Z. Cao, H. Zheng, J. Q. Xiao, F. Jiao, J. G. Chen, Nature Communications, 6 (2015) 1-8.

[70] M. Gong, W. Zhou, M.-C. Tsai, J. Zhou, M. Guan, M.-C. Lin, B. Zhang, Y. Hu, D.-Y.Wang, J. Yang, S. J. Pennycook, B.-J. Hwang, H. Dai, Nature Communications, 5 (2014) 1-6.

[71] H. Wang, H.-W. Lee, Y. Deng, Z. Lu, P.-C. Hsu, Y. Liu, D. Lin, Y. Cui, Nature Communications, 6 (2015) 1-8.

[72] Z. Chen, Y. Ha, H. Jia, X. Yan, M. Chen, M. Liu, R. Wu, Adv. Energy Mater., 9 (2019)1-13.

[73] Z. Chen, H. Xu, Y. Ha, X. Li, M. Liu, R. Wu, Applied Catalysis B: Environmental, 250(2019) 213-223.

[74] H. Han, Z. Bai, T. Zhang, X. Wang, X. Yang, X. Ma, Y. Zhang, L. Yang, J. Lu, Nano Energy, 56 (2019) 724-732.

[75] X. Zhang, S. Liu, Y. Zang, R. Liu, G. Liu, G. Wang, Y. Zhang, H. Zhang, H. Zhao, Nano Energy, 30 (2016) 93-102.

[76] L. Yan, H. Jiang, Y. Xing, Y. Wang, D. Liu, X. Liu, P. Dai, L. Li, X. Zhao, J. Mater.Chem. A, 6 (2018) 1682-1691.

[77] Y. Jiang, Y. Lu, J. Lin, X. Wang, Z. Shen, Small Methods, 2 (2018) 1-10.

92

[78] Y. Xu, W. Tu, B. Zhang, S. Yin, Y. Huang, M. Kraft, R. Xu, Adv. Mater., 29 (2017) 1-8.

[79] Y. Yang, Z. Lin, S. Gao, J. Su, Z. Lun, G. Xia, J. Chen, R. Zhang, Q. Chen, ACS Catal.,
7 (2017) 469-479.

[80] T. Tian, L. Huang, L. Ai, J. Jiang, J. Mater. Chem. A, 5 (2017) 20985-20992.

[81] Z. Yu, Y. Bai, S. Zhang, Y. Liu, N. Zhang, K. Sun, J. Mater. Chem. A, 6 (2018) 10441-10446.

[82] F. Ming, H. Liang, H. Shi, X. Xu, G. Mei, Z. Wang, J. Mater. Chem. A, 4 (2016) 15148-15155.

[83] H. Wang, Y. Wang, L. Tan, L. Fang, X. Yang, Z. Yang, J. Li, H. Zhang, Y. Wang, Applied Catalysis B: Environmental, 244 (2019) 568-575.

[84] B. You, N. Jiang, M. Sheng, S. Gul, J. Yano, Y. Sun, Chem. Mater., 27 (2015) 7636-7642.

[85] Q. Wang, Z. Liu, H. Zhao, H. Huang, H. Jiao, Y. Du, J. Mater. Chem. A, 6 (2018)18720-18727.

[86] L. Zhang, J.-S. Hu, X.-H. Huang, J. Song, S.-Y. Lu, Nano Energy, 48 (2018) 489-499.

[87] W. Chen, Y. Zhang, G. Chen, R. Huang, Y. Wu, Y. Zhou, Y. Hu, K. Ostrikov, Journal of Colloid and Interface Science, 560 (2020) 426-435.

[88] N. Suo, X. Han, C. Chen, X. He, Z. Dou, Z. Lin, L. Cui, J. Xiang, Electrochimica Acta,333 (2020) 1-11.

[89] Y. Lin, Z. Tian, L. Zhang, J. Ma, Z. Jiang, B. J. Deibert, R. Ge, L. Chen, Nature Communications, 10 (2019) 1-13.

[90] J. Zhang, G. Wang, Z. Liao, P. Zhang, F. Wang, X. Zhuang, E. Zschech, X. Feng, Nano Energy, 40 (2017) 27-33.

93

- [91] J. Feng, F. Lv, W. Zhang, P. Li, K. Wang, C. Yang, B. Wang, Y. Yang, J. Zhou, F. Lin,G.-C. Wang, S. Guo, Adv. Mater., 29 (2017) 1-8.
- [92] J. Kim, P.-C. Shih, K.-C. Tsao, Y.-T. Pan, X. Yin, C.-J. Sun, H. Yang, J. Am. Chem. Soc., 139 (2017) 12076-12083.
- [93] O. Diaz-Morales, S. Raaijman, R. Kortlever, P. J. Kooyman, T. Wezendonk, J. Gascon,W. T. Fu, M. T. M. Koper, Nature Communications, 7 (2016) 1-6.
- [94] Z. Fan, J. Jiang, L. Ai, Z. Shao, S. Liu, ACS Appl. Mater. Interfaces, 11 (2019) 47894-47903.
- [95] A. Li, H. Ooka, N. Bonnet, T. Hayashi, Y. Sun, Q. Jiang, C. Li, H. Han, R. Nakamura, Angew. Chem. Int. Ed., 58 (2019) 5054-5058.
- [96] J. S. Mondschein, J. F. Callejas, C. G. Read, J. Y. C. Chen, C. F. Holder, C. K. Badding,R. E. Schaak, Chem. Mater., 29 (2017) 950-957.
- [97] F. Hu, S. Zhu, S. Chen, Y. Li, L. Ma, T. Wu, Y. Zhang, C. Wang, C. Liu, X. Yang, L. Song, X. Yang, Y. Xiong, Adv. Mater., 29 (2017) 1-9.
- [98] M. Retuerto, L. Pascual, F. Calle-Vallejo, P. Ferrer, D. Gianolio, A. González Pereira,
 A. García, J. Torrero, M. T. Fernández-Díaz, P. Bencok, M. A. Peña, J. L. Fierro, S. Rojas,
 Nature Communications, 10 (2019) 1-9.
- [99] Y. Xu, W. Zhang, Y. Li, P. Lu, Z.-S. Wu, Journal of Energy Chemistry, 43 (2020) 52-57.
- [100] W. Gao, Z. Xia, F. Cao, J. C. Ho, Z. Jiang, Y. Qu, Adv. Funct. Mater., 28 (2018) 1-8.
- [101] J. Wang, K. Li, H.-x. Zhong, D. Xu, Z.-l. Wang, Z. Jiang, Z.-j. Wu, X.-b. Zhang, Angew.
- Chem. Int. Ed., 54 (2015) 10530-10534.
- [102] J. Ren, M. Antonietti, T.-P. Fellinger, Adv. Energy Mater., 5 (2015) 1-6.
- [103] S. Chen, J. Duan, J. Ran, M. Jaroniec, Z. Qiao, Energy Environ. Sci., 6 (2013) 3693-3699.

- [104] Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nature Materials, 10(2011) 780-786.
- [105] M.-R. Gao, Y.-F. Xu, J. Jiang, Y.-R. Zheng, S.-H. Yu, J. Am. Chem. Soc., 134 (2012)2930-2933.
- [106] S. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L.
- Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao, Z. Tang, Nature Energy, 1 (2016) 1-10.
- [107] Z. Xue, K. Liu, Q. Liu, Y. Li, M. Li, C.-Y. Su, N. Ogiwara, H. Kobayashi, H. Kitagawa,M. Liu, G. Li, Nature Communications, 10 (2019) 1-8.
- [108] L. Zhuang, L. Ge, H. Liu, Z. Jiang, Y. Jia, Z. Li, D. Yang, R. K. Hocking, M. Li, L.
- Zhang, X. Wang, X. Yao, Z. Zhu, Angew. Chem. Int. Ed., 58 (2019) 13565-13572.
- [109] X. Wang, H. Xiao, A. Li, Z. Li, S. Liu, Q. Zhang, Y. Gong, L. Zheng, Y. Zhu, C. Chen,
- D. Wang, Q. Peng, L. Gu, X. Han, J. Li, Y. Li, J. Am. Chem. Soc., 140 (2018) 15336-15341.
- [110] W. Hong, M. Kitta, Q. Xu, Small Methods, 2 (2018) 1-6.